Физиология центральной нервной системы [Недоспасов Вадим Олегович] (fb2) читать постранично, страница - 3

- Физиология центральной нервной системы 8.33 Мб, 344с. скачать: (fb2) - (исправленную)  читать: (полностью) - (постранично) - Недоспасов Вадим Олегович

 [Настройки текста]  [Cбросить фильтры]

тогда как неполярные – гидрофобны.

У любой клетки достаточно оснований для заявления: "мой дом – моя крепость", причём границы этого дома определяет клеточная или плазматическая мембрана. Центральное место в клетке обычно занимает её ядро (Рис.1.2), отделённое ядерной оболочкой от остальной части клетки – цитоплазмы. Полужидкую среду цитоплазмы называют цитоплазматическим матриксом или цитозолем. В нём находятся органеллы (уменьшительное от слова орган, т.е. органеллы – маленькие органы): митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, окаймлённые пузырьки или вакуоли, рибосомы, микротрубочки и микрофиламенты.


Многие органеллы имеют собственные мембраны, которыми цитоплазма подразделяется на отдельные отсеки или компартменты. Благодаря такому делению каждый компартмент может выполнять свои особые функции и использовать для этого собственный набор ферментов. В связи с этим можно сказать, что в клетке неукоснительно соблюдается принцип разделения труда.

1.2. Клеточная мембрана

Мембрана клетки представляет собой мозаику из липидов и белков, её толщина около 6-8 нанонеметров (нм). Липиды клеточной мембраны по большей части относятся к фосфолипидам, в молекулах которых есть полярная, т.е. несущая электрический заряд, головка и два неполярных хвоста, построенных из атомов углерода и водорода (Рис. 1.3).


Такие молекулы плохо растворяются в воде – полярном растворителе: растворению мешают их неполярные хвосты. Поэтому в воде фосфолипиды образуют мицеллы – микроскопические капельки, внутри которых прячутся неполярные хвосты молекул, а полярные головки обращены наружу – к воде. Когда концентрация фосфолипидов высока, мицеллы соединяются друг с другом так, что образуется двойной или бимолекулярный липидный слой, внутрь которого обращены гидрофобные хвосты, а наружную поверхность представляют гидрофильные полярные головки.

Именно так и выглядит липидная основа клеточной мембраны. Кроме представляющего фосфолипиды фосфатидилхолина в ней есть гликолипиды. Они обычно расположены на наружной поверхности мембраны так, что выступающие углеводные части молекул образуют надмембранный слой. Ещё один компонент мембраны – холестерин, напротив, находится во внутреннем слое мембраны и играет роль регулятора агрегатного состояния липидной части мембраны: плотную мембрану он разжижает, а жидкую – уплотняет. Нормальное состояние мембраны – это жидкая плёнка определённой вязкости, примерно соответствующей вязкости оливкового масла.

В бимолекулярном липидном слое находятся мембранные белки, молекулы которых значительно крупнее, чем у фосфолипидов, и зачастую свёрнуты наподобие клубка, образуя довольно объёмную структуру: она называется глобулой. Неполярные части белковых молекул обычно погружены вовнутрь, а полярные выступают над мембранной поверхностью, как с наружной, так и с внутренней стороны. Есть и такие крупные белковые молекулы, которые пронизывают мембрану насквозь. Их принято называть интегральными белками в отличие от остальных, названных периферическими. Погружённые в жидкую плёнку бимолекулярного слоя липидов белки способны медленно перемещаться из одного участка в другой; используя метафору, о мембране можно сказать так: это липидное море, в котором, как айсберги, плавают белки.

Каким путём могут пройти через мембрану необходимые клетке вещества, как удаляются продукты её жизнедеятельности? Жирорастворимые вещества, естественно, растворяются и в липидах мембраны и поэтому могут довольно легко пройти через неё путём обыкновенной диффузии. Так же легко диффундируют через липидную часть мембраны растворимые в жидкостях газы, например кислород и углекислый газ. Но растворённые в воде молекулы (обычно несущие электрический заряд), ионы и крупномолекулярные соединения способны пройти через мембрану только с помощью специальных транспортных белков, среди которых различают каналы и насосы.

Каналы – это трубчатые белки, они имеют заполненную водой пору, через которую по концентрационному или электрическому градиенту проходит тот или иной ион либо молекула. Такой транспорт называют пассивным, поскольку он не требует расхода энергии специально для переноса. Иное дело, если ионы или молекулы понадобится перенести против концентрационного или электрического градиента: в этом случае понадобится энергия. Такой транспорт назван активным и его осуществляют белки-насосы, которые используют энергию аденозинтрифосфорной кислоты (АТФ).

Многие мембранные белки действуют в качестве ферментов: они ускоряют биохимические реакции в самой мембране и возле её поверхностей. Ферменты высоко специфичны, т.е. каждый из них контролирует только одну биохимическую операцию. В связи с этим каждой клетке приходится иметь не одну сотню различных ферментов, как механику, вынужденному