3a. Излучение. Волны. Кванты [Ричард Филлипс Фейнман] (fb2) читать постранично

- 3a. Излучение. Волны. Кванты (а.с. Фейнмановские лекции по физике -3) 1.57 Мб, 137с. скачать: (fb2) - (исправленную)  читать: (полностью) - (постранично) - Ричард Филлипс Фейнман

 [Настройки текста]  [Cбросить фильтры]

3a. Излучение. Волны. Кванты

Глава 33 ПОЛЯРИЗАЦИЯ


§ 1. Вектор электрического поля световой волны

§ 2. Поляризация рассеянного света

§ 3. Двойное лучепрелом­ление

§ 4. Поляриза­торы

§ 5. Оптическая активность

§ 6, Интенсив­ность отраженного света

§ 7. Аномальное преломление


§ 1. Вектор электрического поля световой волны

В этой главе мы рассмотрим круг явлений, связанных с векторным характером электриче­ского поля световой волны. В предыдущих главах направление колебаний электрическо­го поля нас не интересовало, правда, мы отметили, что вектор электрического поля лежит в плоскости, перпендикулярной направ­лению распространения света. Но нам не нужно было знать направление вектора более точно. Теперь мы перейдем к изучению явлений, в ко­торых главную роль играет определенное на­правление колебаний электрического вектора.

В идеально монохроматической световой волне электрическое поле колеблется с опре­деленной частотой, а так как x- и y-компоненты поля могут колебаться независимо с одной и той же частотой, то сначала мы рассмотрим сложение двух взаимно перпендикулярных колебаний. Какое электрическое поле возни­кает при сложении колебаний x- и y-компонент поля с одинаковой частотой? Складывая коле­бание в направлении x и колебание с той же фазой в направлении у, получаем в плоскости xy колебание в новом направлении.

На фиг. 33.1 показано, как происходит сложение колебаний с разными амплитудами в направлении x и y. Но примеры, представлен­ные на этом рисунке, не исчерпывают всех возможностей: до сих пор предполагалось, что колебания вдоль осей x и y находятся в одной фазе, но это совсем не обязательно. Может случиться, что х- и y-колебания происходят с разными фазами.

В этом последнем случае вектор электриче­ского поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.


Фиг. 33.1. Сложение колебаний в направлениях х и у, когда разность фаз между ними равна нулю.

Подвесим на длинной веревке мяч, чтобы он мог свободно колебаться в го­ризонтальной плоскости; колебания будут носить синусои­дальный характер. Представим себе мысленно оси х и у в горизонтальной плоскости колебаний мяча с началом коор­динат в точке покоя мяча. Выбирая соответствующее на­чальное смещение и начальную скорость мяча, можно заста­вить мяч колебаться по оси х, по оси у или по любому дру­гому направлению в плоскости ху с одной и той же частотой, равной частоте маятника. Эти колебания мяча аналогичны коле­баниям электрического вектора, приведенным на фиг. 33.1. В каждом случае колебания в направлениях х ж у достигают максимума одновременно и, следовательно, оба колебания находятся в фазе. Но известно, что самый общий тип движения мяча — движение по эллипсу — возникает, когда колебания в направлениях х и у происходят с разными фазами.

На фиг. 33.2 показано сложение колебаний по осям х и у для разных значений сдвига фаз между ними. Во всех примерах электрический вектор описывает эллипс. Колебание по прямой есть тоже частный случай эллиптического, когда сдвиг фаз равен нулю (или целому кратному я); при равных амплитудах и сдвиге фаз 90° (или нечетном числе л/2) происходит движение по окружности.

На фиг. 33.2 компоненты электрического поля в направле­ниях х и у записаны в виде комплексных чисел, что оказывается очень удобным для явного выделения разности фаз. В этих обо­значениях не следует только путать действительную и мнимую части с х- и y-компонентами поля. Изображенные на фиг. 33.2 компоненты поля по осям х и у есть реальные физические поля, которые можно измерить. Действительная и мнимая части век­тора электрического поля введены только для математического удобства, и физического смысла такое разделение не имеет.

Сделаем несколько замечаний о терминологии. Свет назы­вается линейно поляризованным (иногда плоско поляризован­ным), если электрическое поле колеблется по прямой линии; на фиг. 33.1 показан случай линейной поляризации. Когда вектор электрического поля описывает эллипс, говорят об эллиптической поляризации. Если же электрический вектор описывает окружность, мы имеем круговую поляризацию. Если электрический вектор при своем движении в световой волне крутится как правосторонний винт, говорят о правой круговой поляризации. На фиг. 33.2, ж приведен пример правой круго­вой поляризации, а на фиг. 33.2, в — пример левой круговой поляризации. В обоих случаях свет движется от плоскости страницы к читателю. Наше определение левой и правой круго­вых поляризаций согласуется с подобными определениями для всех других частиц в современной физике, для которых можно ввести понятие поляризации (например, для электронов). Однако в курсах оптики иногда используются прямо противо­положные определения, поэтому читателю следует с осторож­ностью относиться к терминам левая и правая