Лекции по схемотехнике (fb2) читать постранично, страница - 2

- Лекции по схемотехнике 1.29 Мб, 79с. скачать: (fb2) - (исправленную)  читать: (полностью) - (постранично) - Автор неизвестен

 [Настройки текста]  [Cбросить фильтры]

математиком Дж. Булем и часто называется булевой алгеброй. Алгебра логики является теоретической базой для построения систем цифровой обработки информации. Вначале на основе законов алгебры логики разрабатывается логическое уравнение устройства, которое позволяет соединить логические элементы таким образом, чтобы схема выполняла заданную логическую функцию.


Таблица 1 – Коды чисел от 0 до 15

Десятичное число Коды Двоичный 16-ричный Двоично-десятичный 0 0000 0 000 1 0001 1 0001 2 0010 2 0010 3 0011 3 0011 4 0100 4 0100 5 0101 5 0101 6 0110 6 0110 7 0111 7 0111 8 1000 8 1000 9 1001 9 1001 10 1010 A 00010000 11 1011 B 00010001 12 1100 C 00010010 13 1101 D 00010011 14 1110 E 00010100 15 1111 F 00010101

1.2.1 Основные положения алгебры логики

     Различные логические переменные могут быть связаны функциональными зависимостями. Функциональные зависимости между логическими переменными могут быть описаны логическими формулами или таблицами истинности. 

В общем виде логическая формула функции двух переменных записывается в виде: y=f(X1, X2), где X1, X2 — входные переменные.

В таблице истинности отображаются  все возможные сочетания (комбинации) входных переменных и соответствующие им значения функции y, получающиеся в результате выполнения какой-либо логической операции. При одной переменной полный набор состоит из четырёх функций, которые приведены в таблице 2. 


Таблица 2 – Полный набор функций одной переменной

X Y1 Y2 Y3 Y4 0 1 0 1 0 1 0 1 1 0 Y1 — Инверсия, Y2 — Тождественная функция, Y3 — Абсолютно истинная функция и Y4 – Абсолютно ложная функция.

Инверсия (отрицание) является одной из основных логических функций, используемых в устройствах цифровой обработки информации. 

При двух переменных полный набор состоит из 16 функций, однако в цифровых устройствах используются далеко не все.

Основными логическими функциями двух переменных, используемыми в устройствах цифровой обработки информации являются: дизъюнкция (логическое сложение), конъюнкция (логическое умножение), сумма по модулю 2 (неравнозначность), стрелка Пирса и штрих Шеффера. Условные обозначения логических операций, реализующих указанные выше логические функции одной и двух переменных, приведены в таблице 3.


Таблица 3 Названия и обозначения логических операций

Операцию инверсии можно выполнить чисто арифметически:   и алгебраически:   Из этих выражений следует, что инверсия x, т.е.  дополняет x до 1. Отсюда и возникло ещё одно название этой операции — дополнение. Отсюда же можно сделать вывод, что двойная инверсия приводит к исходному аргументу, т.е.   и это называется законом двойного отрицания.


Таблица 4 – Таблицы истинности основных функций двух переменных

Дизъюнкция Конъюнкция Исключающее ИЛИ Стрелка Пирса Штрих Шеффера X1 X2 Y X1 X2 Y X1 X2 Y X1 X2 Y X1 X2 Y 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 Дизъюнкция. В отличие от обычного арифметического или алгебраического суммирования здесь наличие двух единиц даёт в результате единицу. Поэтому при обозначении логического суммирования предпочтение следует отдать знаку (∨) вместо знака (+) [1].

Первые две строчки таблицы истинности операции дизъюнкции (x1=0) определяют закон сложения с нулём: x ∨ 0 = x, а вторые две строчки (x1 = 1) — закон сложения с единицейx ∨ 1 = 1.

Конъюнкция. Таблица 4 убедительно показывает тождественность операций обычного и логическог  умножений. Поэтому в качестве знака логического умножения возможно использование привычного знака обычного умножения в виде точки [1].

Первые две строчки таблицы истинности операции конъюнкции определяют закон умножения на ноль: x·0 = 0, а вторые две — закон умножения на единицу: x·1 = x.

Исключающее ИЛИ. Под функцией «Исключающее ИЛИ» понимают следующее: единица на