Лекции по схемотехнике (fb2)

- Лекции по схемотехнике 1.29 Мб, 79с. (скачать fb2) - Автор неизвестен

Настройки текста:




Элементы схемотехники цифровых устройств обработки информации Екатеринбург 2008

Введение

Электронные вычислительные машины выполняют арифметические и логические операции, при этом используется два класса переменных: числа и логические переменные.

Числа несут информацию о количественных характеристиках системы; над ними производятся арифметические действия.

Логические переменные  определяют состояние системы или принадлежность её к определённому классу состояний (коммутация каналов, управление работой ЭВМ по программе и т.п.).

Логические переменные могут принимать только два значения: истина и ложь. В устройствах цифровой обработки информации этим двум значениям переменных ставится в соответствие два уровня напряжения: высокий — (логическая «1») и низкий — (логический 0»). Однако в эти значения не вкладывается смысл количества.

Элементы, осуществляющие простейшие операции над такими двоичными сигналами, называют логическими. На основе логических элементов разрабатываются устройства, выполняющие и арифметические, и логические операции.

В настоящее время логические элементы (ЛЭ) выполняются с помощью различных технологий, которые определяют численные значения основных параметров ЛЭ и, как следствие, качественные показатели цифровых устройств обработки информации, разработанных на их основе. Поэтому в данном пособии схемотехнике и параметрам ЛЭ различных технологий уделено должное внимание.

1 Арифметические и логические основы ЭВМ

1.1  Арифметические  основы  ЭВМ

В настоящее время в обыденной жизни для кодирования числовой информации используется десятичная система счисления с основанием 10, в которой используется 10 элементов обозначения: числа 0, 1, 2, … 8, 9. В первом (младшем) разряде указывается число единиц, во втором — десятков, в третьем — сотен и т.д.; иными словами, в каждом следующем разряде вес разрядного коэффициента увеличивается в 10 раз.

В цифровых устройствах обработки информации используется двоичная система счисления с основанием 2, в которой используется два элемента обозначения: 0 и 1. Веса разрядов слева направо от младших разрядов к старшим увеличиваются в 2 раза, то есть имеют такую последовательность: 8421. В общем виде эта последовательность имеет вид:

…252423222120,2-12-22-3

и используется для перевода двоичного числа в десятичное. Например, двоичное число 101011 эквивалентно десятичному числу 43:

 25·1+24·0+23·1+22·0+21·1+20·1=43 

В цифровых устройствах используются специальные термины для обозначения различных по объёму единиц информации: бит, байт, килобайт, мегабайт и т.д.

Бит или двоичный разряд определяет значение одного какого-либо знака в двоичном числе. Например, двоичное число 101 имеет три бита или три разряда. Крайний справа разряд, с наименьшим весом, называется младшим, а крайний слева, с наибольшим весом, — старшим. 

Байт определяет 8-разрядную единицу информацию, 1 байт=23 бит, например, 10110011 или 01010111 и т.д., 1 кбайт = 210 байт, 1 Мбайт = 210 кбайт = 220 байт.

Для представления многоразрядных чисел в двоичной системе счисления требуется большое число двоичных разрядов. Запись облегчается, если использовать шестнадцатеричную систему счисления. 

Основанием шестнадцатеричной системы счисления является число 16=24, в которой используется 16 элементов обозначения: числа от 0 до 9 и буквы A, B, C, D, E, F. Для перевода двоичного  числа в шестнадцатеричное достаточно двоичное число разделить на четырёхбитовые группы: целую часть справа налево, дробную — слева направо от запятой. Крайние группы могут быть неполными.

Каждая двоичная группа представляется соответствующим шестнадцатеричным символом (таблица 1). Например, двоичное число 0101110000111001 в шестнадцатеричной системе выражается числом 5C39.

Пользователю наиболее удобна десятичная система счисления. Поэтому многие цифровые устройства, работая с двоичными числами, осуществляют приём и выдачу пользователю десятичных чисел. При этом применяется двоично-десятичный код.

Двоично-десятичный код образуется заменой каждой десятичной цифры числа четырёхразрядным двоичным представлением этой цифры в двоичном коде (См. таблицу 1). Например, число 15 представляется как 00010101 BCD (Binary Coded Decimal). При этом в каждом байте располагаются две десятичные цифры. Заметим, что двоично-десятичный код при таком преобразовании не является двоичным числом, эквивалентным десятичному числу.

1.2  Логические  основы  ЭВМ

Раздел математической логики, изучающий связи между логическими переменными, имеющими