Электроника в вопросах и ответах [И Хабловски] (fb2) читать онлайн

- Электроника в вопросах и ответах (пер. А. А. Визель) 5.89 Мб, 335с. скачать: (fb2) - (исправленную)  читать: (полностью) - (постранично) - И. Хабловски - В. Скулимовски

 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]

Хабловски И., Скулимовски В. «Электроника в вопросах и ответах»

Предисловие к русскому изданию



В современной науке и технике исключительная роль принадлежит одной из быстро развивающихся областей — электронике. Она в значительной степени определяет совершенство технических средств вычислительной техники, радиоэлектроники, систем управления, передачи и обработки информации.

Особенностью современной электроники является быстрое внедрение новейших достижений в различные области народного хозяйства. Сегодня трудно найти область науки, техники, народного хозяйства, где бы изделия электроники не применялись. Появление интегральных микросхем, БИС и микропроцессоров позволяет значительно повысить надежность радиоэлектронных устройств и снизить их габаритные размеры и массу.

В процессе проектирования и создания различных радиотехнических устройств и систем приходится не только учитывать основные характеристики электронных приборов и их конструкцию, но и глубоко понимать физические основы работы, технологию изготовления, уметь сравнивать электронные приборы по их характеристикам и параметрам при выборе оптимальных схемотехнических решений.

Предлагаемая читателю книга представляет собой небольшую популярную энциклопедию, в которой в форме вопросов и ответов, а их более 500, приведены сведения о многих применяемых сегодня электронных приборах. Необходимо отметить, что понятие «электроника» в иностранной литературе значительно шире, поэтому некоторые вопросы можно отнести к радиотехнике, радиоэлектронике, вычислительной и измерительной технике.

Достоинством книги является и то, что, не приводя конкретных данных по схемным решениям, авторы книги показали эволюцию развития электроники — переход от ламповых схем к полупроводниковым приборам, а затем и к интегральным микросхемам. Они проделали большую работу по систематизации и отбору материала; в простоте изложения многих вопросов не теряется их научность.

Графический материал книги приведен в основном в соответствии с действующими в нашей стране стандартами. Некоторые дополнительные сведения, поясняющие изложение, даны в примечаниях и сносках. К сожалению, отдельные вопросы электроники, связанные с акустоэлектроникой, квантовой и СВЧ электроникой, не нашли отражения в этой книге.

Хочется надеяться, дорогой читатель, что в этой книге Вы найдете ответы на интересующие Вас вопросы.

Замечания и пожелания можно присылать по адресу: 101000, Москва, Почтамт, а/я 693, издательство «Радио и связь», редакция литературы по электронной технике.

Канд. техн. наук В. И. Котиков

Глава 1 ОБЩИЕ СВЕДЕНИЯ. АТОМ И МАТЕРИЯ. ЭЛЕКТРИЧЕСКИЕ СИГНАЛЫ

Что такое электроника?

Это область науки и техники, занимающаяся использованием явлений, связанных с движением заряженных частиц в вакууме, газах и твердых телах. Электроника включает в себя изучение физических процессов, разработку конструкций и технологию изготовления электронных приборов (ламп, транзисторов, интегральных микросхем), а также устройств, в которых эти приборы применяют.

В каких областях науки, техники и народного хозяйства применяют электронные устройства?

Практически во всех. Достижения электроники используются для создания измерительных устройств, без которых не было бы возможно развитие химии, физики, биологии, медицины и даже таких областей науки, как социология, психология, археология. Возникновение и развитие космонавтики и исследование космического пространства стало возможным только благодаря электронике.

Все чаще электронные устройства используются в учебном процессе. При обучении иностранным языкам, например, широко применяют так называемые аудиовизуальные устройства. Во многих странах телевидение используется для преподавания телезрителям с разным уровнем подготовки, в том числе в развивающихся странах — на уровне начального образования.

Электронные устройства позволяют автоматизировать технологические процессы и контроль качества продукции на предприятиях текстильной, автомобильной и химической промышленности, в рудниках, на верфях. Электронные устройства способствуют увеличению производства различных изделий, повышению их качества, улучшению условий труда и техники безопасности. Без электронных устройств не могут функционировать современные транспорт, телеграф, телефон и радиосвязь, так же как без электронных вычислительных центров и устройств обработки данных — современные системы управления народным хозяйством.

Наконец, электроника — это устройства повседневного пользования: радиоприемники, телевизоры, магнитофоны, электропроигрыватели, значение которых в жизни человека бесспорно. Современные системы кабельной и спутниковой связи, созданные уже в нескольких странах, обеспечивают произвольные двусторонние звуковые и визуально-звуковые соединении между любыми абонентами а также возможность выбора произвольной телевизионной или радиовещательной программы и даже реализацию индивидуальных программ с магнитофонных кассет и пленок.

Когда началось развитие электроники?

Электроника сравнительно молодая отрасль науки и техники. Теоретические основы ее были разработаны во второй половине XIX и в первой половине XX в. Первые лампы и полупроводниковые приборы были созданы в XX в. Самые важные исторические моменты в развитии электроники отмечаются следующими датами:

1865 г. — Дж. Максвелл разработал теорию электромагнитных волн;

1883 г. — Т. Эдисон открыл термоэлектронную эмиссию;

1886 г. — Г. Герц открыл электромагнитные волны, годом позже — фотоэмиссию;

1897 г. — Дж. Томсон открыл электрон;

1897 г. — К. Браун изобрел осциллографическую трубку;

1904 г. — Дж. Флеминг создал диод с накаливаемым катодом;

1906 г. — Л. де Форест изобрел триод;

1948 г. — У. Шокли, У. Браттейн и Дж. Бардин изобрели транзистор.

Какова структура атома?

Строение атома можно представить с помощью плоской модели (рис. 1.1), являющейся упрощением пространственной модели атома, разработанной Бором в 1913 г. В такой модели атом состоит из ядра и некоторого числа электронов, вращающихся вокруг ядра по определенным орбитам. Ядро имеет относительно большую массу и положительный заряд, электрон — малую массу и отрицательный заряд. Положительный заряд ядра и отрицательный заряд всех вращающихся вокруг этого ядра электронов находятся в равновесии, и изолированный атом в нормальном состоянии электрически нейтрален. Суммарный заряд электронов в атоме определяется атомным числом элемента. Орбиты, по которым вращаются электроны, называемые орбитами или оболочками, точно определены, и ни один электрон в атоме не может вращаться и пространстве между оболочками. Оболочки обозначают последовательно, начиная от ядра, буквами K, L, M, N, …. Оболочка К может содержать до двух электронов, L — до 8, M до 18 и т. д. На каждой следующей могут находиться электроны лишь в том случае, если предыдущие оболочки заполнены. Только последняя, внешняя, так называемая валентная оболочка, может быть не заполнена. Находящиеся на ней электроны называют валентными.



Рис 1.1. Плоская модель атома кремния


Валентная оболочка определяет химические свойства элемента. Ядро вместе с заполненными, оболочками образует постоянную часть атома, не подвергающуюся изменениям в химических процессах при изменениях температуры и протекании тока. С каждой оболочкой связана определенная энергия вращающихся на ней электронов. Чем дальше от ядра находится электрон, тем больше его энергия. Наибольшей энергией обладают валентные электроны.

Сообщая электронам энергию извне (температура, излучение), можно вызвать их переходы на оболочки с более высокими энергетическими уровнями. Атом с электронами, находящимися на более высоких энергетических уровнях, называется возбужденным атомом. Такое состояние является неустойчивым — электрон, возвращаясь на низший энергетический уровень, отдает приобретенную энергию в виде кванта энергии излучения. Определенная доза подводимой извне энергии может сделать электрон независимым от сил притяжения ядра. Атом, лишенный электрона, называется положительным ионом. Процесс возникновения ионов называется ионизацией. Существует обратное явление — соединение нона с электроном, называемое рекомбинацией.

Что такое диаграмма энергетических уровней атома?

Это диаграмма (рис. 1.2), представляющая энергетические свойства данного атома, называемая также зонной моделью атома. Для каждого слоя K, L, М… на этой диаграмме указывается численное значение энергии электронов, находящихся в этом слое (зоне).

Энергия выражается в электронвольтах [эВ]. Один электронвольт соответствует работе электрона при преодолении разности потенциалов, равной 1 В. Диаграмма энергетических уровней отражает законы квантовой механика, из которых следует, что каждый энергетический уровень может быть занят определенным числом электронов. Слой К содержит один энергетический уровень, слой L — два находящихся рядом уровня (s — внутренний, требует для заполнения двух электронов, р — внешний — шести электронов), М — три уровня (s, p, d) и т д. Представленная на рис 1.2 диаграмма относится только к одиночному изолированному атому. Если атом находится в близком соседстве с другими атомами, например в твердом теле, то диаграмма энергетических уровней изменяется.



Рис. 1.2. Зонная модель атома

Что такое твердое тело?

Это тело, в котором атомы или частицы образуют пространственную упорядоченную систему, называемую кристаллической решеткой, и удерживаются в этой системе благодаря силам взаимодействия. С точки зрения электропроводности твердые тела делятся на проводники (металлы), полупроводники и диэлектрики (изоляторы).

Что такое диаграмма энергетических уровней в твердом теле?

Такая диаграмма, называемая также зонной моделью твердого тела, принципиально отличается от диаграммы, составленной для изолированного одиночного атома (рис. 1.2), что является следствием взаимодействия между собой атомов, образующих кристаллическую решетку.



Рис. 1.3. Расщепление энергетических уровней в твердом теле


В соответствии с законами квантовой механики, согласно которым число электронов, находящихся на одном и том же энергетическом уровне, не может быть больше двух, связь атомов в кристаллической решетке и их взаимодействие вызывают расщепление энергетических уровней и возникновение многих новых уровней, расположенных близко одни к другому в пределах данного слоя. При этом энергетические уровни образуют энергетические зоны. В электронике особенно важны две зоны: валентная, называемая также основной, которая образуется при расщеплении валентных уровней отдельных атомов, и зона с более высокими энергетическими уровнями, чем уровни валентной зоны, называемая зоной проводимости (рис. 1.3). Находящиеся в этой зоне электроны могут свободно перемещаться под влиянием электрического поля.

Что такое проводник?

Это твердое тело (металл), проводящее электрический ток по принципу движения свободных электронов. С ростом температуры проводимость металлов убывает, а при очень низких температурах (близких к 0 К) становится очень большой (сверхпроводимость).

По структуре кристаллической решетки и диаграмме энергетических уровней проводник является телом, в котором зоны проводимости и валентная перекрываются (рис. 1.4).



Рис. 1.4. Зонная модель проводника


Благодаря этому в кристаллической решетке существует высокая концентрация электронов, образующих так называемый электронный газ, который может свободно перемещаться в объеме металла под воздействием внешнего электрического поля.

Хорошими проводниками электрического тока являются медь, серебро, золото. Медь нашла широкое применение в виде проводников или соединений на печатных платах. Серебро, а особенно золото, из-за высокой стоимости используют значительно реже.

Основным параметром, определяющим проводник, является его электрическое сопротивление, выражающееся отношением падения напряжения на проводнике к протекающему по нему току. Хороший проводник оказывает малое сопротивление протеканию тока.

Электрическое сопротивление — параметр, зависящий от температуры.

Что такое диэлектрик?

Это тело, не проводящее электрический ток. Внутренняя структура диэлектрика (или изолятора) характеризуется полностью заполненной электронами валентной зоной и незаполненной зоной проводимости. Между зонами располагается широкая запрещенная зона (рис. 1.5), так что при нормальных условиях электроны не могут переходить из валентной зоны в зону проводимости. Из-за отсутствия электронов в зоне проводимости диэлектрик не может проводить ток.



Pиc. 1.5. Зонная модель диэлектрика


Диэлектрики широко применяют в электронике. Они служат основным материалом в производстве конденсаторов (слюда, керамика, стекло, пленка, бумага и различные окислы, например, тантала). Диэлектрики используют в качестве изоляционного материала для покрытия проводов (изоляционная эмаль), изготовления каркасов катушек индуктивности (бакелит, керамика) и трансформаторов.

Свойства диэлектрика характеризуются диэлектрической проницаемостью, потерями, теплостойкостью, гигроскопичностью. Потери являются частотно-зависимым параметром.

Что такое полупроводник?

Это тело, свойства которого, если речь идет о протекании тока могут подвергаться изменению в зависимости от условий. Протекание тока в полупроводнике может происходить на основе движения отрицательных (электронов) и положительных зарядов. Проводимость полупроводников увеличивается с ростом температуры. При очень низких температурах полупроводники ведут себя, как диэлектрики.

Свойства полупроводника можно проиллюстрировать зонной моделью (рис. 1.6).



Рис. 1.6. Зонная модель полупроводника


В полупроводнике, как и в диэлектрике, между незаполненной зоной проводимости и полностью заполненной валентной зоной имеется запрещенная зона. Однако она относительно узка (меньше 2 эВ). При определенном, достаточно небольшом энергетическом возбуждении (тепловом или под влиянием электрического поля) некоторые электроны из валентной зоны могут переходить в зону проводимости. При этом в валентной зоне появятся вакантные уровни. Атом, у которого электрон перешел в зону проводимости, превращается в положительный нон. Недостающий электрон у такого атома может быть восполнен соседним атомом, который в свою очередь становятся положительным ионом, при этом положительный ион как бы перемещается в объеме валентной зоны. Такой подвижный положительный ион называется дыркой. Электрический ток в полупроводнике связан с движением дырок в валентной зоне и электронов в зоне проводимости, причем дырочный и электронный токи равны, так как освобождение одного электрона вызывает одновременно возникновение одной дырки. Полупроводник с такими свойствами называется собственным.

На рис. 1.7 показаны плоские модели кристаллической решетки собственного полупроводника, в котором, как легко заметить, имеется определенная симметрия структуры: любой атом полупроводника имеет на внешней оболочке четыре собственных электрона и связан с четырьмя электронами четырех соседних атомов. Аналогичную структуру может иметь изолятор (например, алмаз) с той лишь разницей, что в полупроводнике, как уже подчеркивалось, некоторые электроны могут при комнатной температуре переходить из валентной зоны в зону проводимости.



Рис. 1.7. Плоские модели (а и б) кристаллической решетки собственно полупроводника

Что такое несобственный полупроводник?

Это полупроводник, у которого для изменения свойств, в основном электропроводности, нарушена структура кристаллической решетки. Небольшое протекание тока в собственном полупроводнике происходит на основе равенства токов, возникающих из-за подвижных электронов и такого же числа подвижных дырок. В несобственном полупроводнике эти токи не равны, поскольку не одинакова концентрация электронов и дырок. Существуют два типа несобственных (примесных) полупроводников: полупроводники типа n и типа р.

Что такое полупроводник типа n?

В полупроводнике типа n преобладает электронный ток. Нарушения кристаллической структуры (рис. 1.8, а) достигают введением в кристалл чистого полупроводника (кремния или германия), примесей донорного типа (например, мышьяка), т. е. элемента, имеющего на внешней оболочке на один валентный электрон больше, чем германий и кремний. При этом в кристаллической решетке остается один электрон, который может легко перейти в зону проводимости и участвовать в прохождении тока как донорный или неосновной носитель.

В кристаллической решетке сохраняется ион с положительным зарядом. Следует подчеркнуть, что этот положительный ион в полупроводнике типа n неподвижный, а следовательно, не участвует в протекании тока в отличие от дырок, возникающих при собственной проводимости. В зонной модели полупроводника типа n (рис. 1.8, б) введение донорной примеси вызывает возникновение дополнительного энергетического уровня между зоной проводимости и валентной зоной.



Рис. 1.8. Плоская (а) и зонная (б) модели кристаллической решетки полупроводника типа n


Разность энергий между дополнительным уровнем и зоной проводимости настолько мала (для кремниевого полупроводника она составляет около 0,05 эВ), что электрон может легко перейти с этого дополнительного уровня в зону проводимости. Положительный ион, образовавшийся при отрыве электрона от атома примеси, остается фиксированным. Очевидно, что в полупроводнике типа n имеются также дырки, возникшие в процессе образования пар электрон — дырка при собственной проводимости, однако их значительно меньше, чем электронов, возникающих в основном за счет введения примеси. Дырки, существующие в полупроводнике типа n, называются неосновными, а электроны — основными носителями.

Что такое полупроводник типа р?

В полупроводнике типа р в качестве примесей — акцепторов используются атомы элементов, имеющие на внешней оболочке на один электрон меньше, чем кремний и германий, например индий. В кристаллической решетке (рис. 1.9, а) вблизи такого атома в одном из узлов отсутствует одни электрон и возникает дырка, которая заполняется электроном соседнего атома. В результате атом становится неподвижным отрицательным ионом, а дырка может перемещаться далее. Таким образом, в полупроводнике типа р носителями являются подвижные дырки, в то время как отрицательные ионы не принимают участия в прохождении тока.

В зонной модели полупроводника типа р (рис. 1.9, б) введение акцепторной примеси вызывает появление дополнительного энергетического уровня вблизи валентной зоны. Отрицательные ионы остаются неподвижными в узлах решетки.



Рис. 1.9. Плоская (а) и зоновая (б) модели кристаллической решетки полупроводника типа р


Для полупроводника типа р характерна проводимость на основе движения дырок как основных носителей в валентной зоне. Очевидно, что в полупроводнике типа р имеются также электроны, возникшие в процессе образования пар электрон — дырка при собственной проводимости, однако их значительно меньше, чем дырок, образующихся за счет введения примесей. Существующие в полупроводнике типа р электроны называются неосновными, а дырки — основными носителями заряда.

Что такое термоэлектронная эмиссия?

Это эмиссия электронов из твердого (металл, полупроводник) либо жидкого тела (ртуть), вызванная нагревом его до высокой, температуры, которая сообщает электронам энергию, необходимую для того, чтобы они могли покинуть тело и перейти в окружающее пространство — вакуум или газ.

Термоэлектронная эмиссия используется в электронных лампах для получения электронов, создающих электрический ток между электродами лампы.

Что такое фотоэмиссия и фотопроводимость?

Это так называемые фотоэлектрические эффекты: внешний (фотоэмиссия) и внутренний (фотопроводимость). Фотоэмиссия — эмиссия электронов из твердого тела (металла, полупроводника) под воздействием энергии излучения, например видимого света или инфракрасного излучения. Число эмиттированных электронов зависит от интенсивности излучения.

Фотопроводимость обусловливается увеличением электрической проводимости под влиянием лучистой энергии, вызывающей ионизацию атомов в данном теле, в результате чего возрастает число свободных электронов, возникающих в теле.

Фотоэмиссия и фотопроводимость используются в передающих электронно-лучевых трубках, находящихся в телевизионных камерах.

Исчерпываются ли возможности получения свободных электронов термоэмиссией и фотоэмиссией?

Нет. Свободные электроны можно получить и под влиянием сильного электрического поля (автоэлектронная эмиссия), и под влиянием энергии потока электронов твердого тела, это так называемая вторичная эмиссия.

Что такое явление ионизации в газах?

Ионизацией называется процесс разделения атома (или частицы) на электрон и положительный ион. Для электроники представляет интерес ионизация газа, находящегося в электрическом поле. В этом случае свободные электроны перемещаются в направлении положительного электрода (рис. 1.10), и если они обладают соответствующей энергией (напряженность электрического поля соответственно велика), то в результате их соударений с атомами газа снова возникают свободные электроны и положительные ионы, которые при своем движении могут снова выбивать электроны и т. д. Здесь имеет место лавинная ионизация, возникающая под действием сильного электрического поля.



Рис. 1.10. Лавинная ионизация газа


Процесс ионизации характеризуется резким увеличением числа носителей заряда (электронов и ионов), в результате чего проводимость между электродами в лампе резко увеличивается. Одновременно с процессом ионизации в большей или меньшей степени происходит обратный процесс, называемый деионизацией или рекомбинацией, который заключается в соединении ионов с электронами.

Ионизации сопутствует свечение газа, причем цветность свечения зависит от вида газа, а яркость — от напряженности электрического поля.

Какие токи существуют в электронике и как они используются?

В электронике, как и в электротехнике, используют постоянный и переменный ток (рис. 1.11). Постоянным называется ток, который не изменяется во времени. Переменный ток изменяется как по значению, так и по направлению, причем эти изменения могут иметь разную скорость. Переменный ток может быть регулярным (синусоидальным) и нерегулярным (соответствующим человеческой речи). Наипростейшей формой переменного тока является синусоидальное колебание.



Pис. 1.11. Примеры формы токов:

а — постоянный: б — переменный синусоидальный медленно и быстро изменяющийся; в — непериодический


В электронике постоянный ток чаще всего играет вспомогательную, но важную роль. Без источников постоянного тока не могло бы работать ни одно электронное устройство, так как и лампы, и транзисторы требуют питания постоянным током. Основной задачей электронных устройств является перенос и преобразование некоторой информации (сигналов звука, изображения, изменения некоторых физических величин и т. д.). В общем случае все эти сигналы переменные и могут быть представлены только переменными токами. При таком подходе постоянный ток можно считать лишь частным (предельным) случаем переменного. Большое значение в электронике имеют токи, которые резко меняются за относительно короткое время. Это — импульсные токи (колебания).

В каких единицах измеряется ток?

Ток измеряется в амперах [А]. В электронике часто пользуются в тысячу раз меньшей единицей — миллиампером [мА]. Токи, протекающие в транзисторных цепях, обычно имеют порядок нескольких сотен миллиампер. В мощных каскадах наблюдаются большие токи (единицы и сотни ампер).

В каких единицах измеряется напряжение?

Напряжение, определяющее разность потенциалов (чаще всего относительно «земли» или массы), измеряется в единицах, называемых вольтами [В]. В электронике часто пользуются в тысячу раз меньшей единицей — милливольтом [мВ] и в миллион раз меньшей единицей — микровольтом [мкВ]. В транзисторных устройствах обычно имеют дело с постоянными напряжениями от нескольких до 10–20 В и переменными напряжениями от милливольт до 10–20 В.

В каких единицах измеряется электрическое сопротивление?

Электрическое сопротивление, измеряется в омах [Ом). Один ом — это сопротивление цепи, в которой протекает ток в один ампер при напряжении, равном одному вольту. В электронике часто пользуются в тысячу раз большей единицей — килоомом [кОм] и в миллион раз большей единицей — мегаомом [МОм].

Что определяет закон Ома?

Закон Ома определяет зависимость между током и напряжением в цепи. Он гласит, что ток I, протекающий в цепи, пропорционален напряжению U и обратно пропорционален электрическому сопротивлению R, находящемуся в данной цепи.

Математически закон Ома выражается зависимостью

= U/RU = R·I или R = U/I.

При использовании этой зависимости следует помнить о размерности используемых единиц. Так, если ток выражается в амперах, а напряжение в вольтах, то сопротивление получаем в омах.

В каких единицах измеряется мощность электрического тока?

Мощность электрического тока измеряется в ваттах [Вт]. В электронике часто пользуются единицей, в тысячу раз меньшей, называемой милливаттом [мВт]. В электронных устройствах действуют чаще всего мощности от нескольких милливатт до нескольких десятков ватт. Мощность источников питания постоянного тока в большинстве случаев не превышает нескольких сотен ватт.

Математически мощность Р есть произведение тока на напряжение

Р = U·I

или с учетом закона Ома

Р = I2·R либо Р = U2/R.

Что мы называем источником напряжения?

Источником напряжения или точнее источником с постоянным выходным напряжением называется такой источник электрической энергии, который на своих внешних зажимах имеет постоянное, неизменное напряжение независимо от тока, потребляемого от этого источника.

Каждый источник обладает определенным внутренним сопротивлением и может быть представлен в виде последовательного соединения (рис. 1.12) идеальной ЭДС, выраженной в вольтах, и определенного внутреннего сопротивления Rг, выраженного в омах.



Рис. 1.12. Источник и внешняя цепь


Если к такому источнику подключить внешнюю цепь, то потребляемый ею ток будет идти через внутреннее сопротивление источника. На нем возникает падение напряжения тем большее, чем больше ток, — потребляемый внешней цепью. Напряжение на внешних зажимах источника равно разности ЭДС источника и падения напряжения на внутреннем сопротивлении. Поэтому внешнее напряжение может иметь постоянное значение, несмотря на изменения потребляемого тока, только тогда, когда внутреннее сопротивление источника близко к нулю. Именно такой источник будем называть источником напряжения.

Графическое изображение источника напряжения показано на рис. 1.13. На практике идеальные источники с постоянным напряжением не встречаются. Однако часто источники с внутренним сопротивлением, более чем в 10 раз меньшим сопротивлении нагрузки, можно приближенно считать источниками напряжения.


Рис. 1.13. Графическое изображение источника напряжения

Что мы называем источником тока?

Источником тока или точнее источником с постоянным выходным током называется такой источник электрической энергии, который отдаст во внешнюю цепь ток постоянного значения независимо от падения напряжения на этой цепи, т. е. независимо от электрического сопротивления внешней цепи. Отдаваемый источником ток может иметь постоянное значение только в том случае, когда внешнее сопротивление Rн пренебрежимо мало по сравнению с внутренним сопротивлением источника Rвн. Это бывает только тогда, когда внутреннее сопротивление источника бесконечно велико. Такой источник называется идеальным источником тока.

Графически источник тока представлен на рис. 1.14. Чаще на схемах не показывают внутреннее сопротивление Rвн либо вместо резистора, включаемого последовательно с собственно источником тока, изображают идеальный источник с проводимостью (величина, обратная сопротивлению), обозначаемой Yвн. Проводимость подключают параллельно источнику. На практике источниками тока часто считают источники, внутреннее сопротивление которых значительно больше сопротивления нагрузки, на которую работает данный источник.



Рис. 1.14. Графическое изображение источника тока:

а — переменного тока; б — постоянного тока

Что мы имеем в виду, когда говорим о согласовании источника с нагрузкой?

Если источник с некоторым внутренним сопротивлением нагрузить внешним сопротивлением, то окажется, что мощность, отдаваемая источником и выделяемая в нагрузке, будет зависеть от внешнего сопротивления. Максимальная мощность выделяется на нагрузке в том случае, когда ее сопротивление равно сопротивлению источника (рис. 1.15). Такое состояние называется согласованием нагрузки с источником.



Рис. 1.15. Зависимость передаваемой в нагрузку мощности от сопротивления нагрузки

Какие источники постоянного и переменного токов встречаются в электронике?

В электронике встречаются различные виды источников постоянного и переменного токов. Источниками постоянного тока служат батареи и аккумуляторы, используемые для питания переносной и бортовой аппаратуры, а также различные устройства электропитания. Батареи и аккумуляторы характеризуются малым внутренним сопротивлением и в большинстве случаев их можно считать источниками напряжения. У питающих устройств постоянного тока, работающих по принципу выпрямления переменного тока, внутреннее сопротивление зависит от их схемного решения, однако в большинстве случаев они близки к источникам напряжения.

Источниками переменного тока в электронных устройствах чаще всего служат транзисторные или ламповые схемы. Транзисторная схема как источник сигнала обладает сопротивлением, зависящим от типа транзистора и схемы его включения. Обычно оно колеблется от нескольких ом до нескольких мегом. Наибольшее сопротивление, которого достаточно, чтобы считать схему источником тока, можно получить при использовании полевых транзисторов или ламп типа пентода.

Какими параметрами характеризуется переменный ток?

Переменный ток можно характеризовать следующими параметрами (рис. 1.16): период или частота, амплитуда, размах или пределы изменения мгновенного значения тока, действующее значение тока, форма колебания.



Рис. 1.16. Вид колебания переменного синусоидального тока

(i — мгновенное значение тока, Т — период колебаний, Im — амплитуда тока, 2Im — размах)


В случае синусоидального колебания период Т (в секундах) соответствует расстоянию на оси времени между двумя соседними пиками (двумя положительными или двумя отрицательными). Длина волны λ характеризует то же самое расстояние, но выражается в сантиметрах, дециметрах или метрах. Частота f — это величина, обратная периоду, f = 1/Т. Основная единица измерения частоты — герц [Гц] (один период в секунду). Единица, в тысячу раз большая, называется килогерцем [кГц), в миллион раз большая — мегагерцем [МГц), а в миллиард раз большая — гигагерцем (ГГц). Иногда вместо частоты определяют круговую частоту колебания, обозначаемую буквой ω. Между частотой f и ω имеется связь: ω = 2πf.

Какие частоты переменного тока встречаются в электронике?

Диапазон частот, с которым сталкиваются в электронике, весьма широк и зависит от отрасли, в которой используются колебания. Он простирается от нулевой частоты, соответствующей постоянному току, до частоты в несколько десятков гигагерц и более. Частота питающей сети переменного тока в ПНР и СССР равна 50 Гц.

Речи и музыке, преобразованным в электрические колебания, соответствуют низкие, или звуковые, частоты, лежащие в диапазоне от нескольких герц до 10–20 кГц.

Телевизионному изображению, полученному в результате преобразования отраженного от объекта света в электрический сигнал, соответствуют видеочастоты, лежащие в диапазоне от 0 Гц до 5–6 МГц.

Для передачи на расстояние звуков и изображений широко используются электромагнитные волны диапазона радиочастот.

Что называется пиковым, или амплитудным, значением переменного электрического колебания?

Пиковым, или амплитудным, значением колебания называется его наибольшее значение. В случае периодически повторяющихся процессов, таких, например, как синусоидальное колебание, пиковое значение, или амплитуду, Аm определяют (рис. 1.16) на интервале времени, равном одному периоду. На таком интервале встречаются две амплитуды, отличающиеся только полярностью, — положительная и отрицательная. При записи пиковое, или амплитудное, значение переменного тока обозначают большой буквой с индексом m: Um, Im.

Амплитудное значение тока, действующего в электрической цепи, часто зависит от активного элемента (транзистора, лампы) схемы либо ограничено искажениями сигнала, возникающими при его прохождении через цепь.

Амплитудное значение напряжения в схеме ограничивается напряжением электрического пробоя элементов схемы.

Что называется действующим значением переменного тока?

Действующее значение переменного тока выражается значением постоянного тока, который, протекая через цепь с постоянным значением электрического сопротивления, выделяет такую же энергию, как и переменный ток, протекающий за то же самое время. Для синусоидального колебания действующее значение[1] связано с амплитудным следующей зависимостью:

Uд = 0,707·Um либо Iд = 0,707·Im.

Действующее значение переменного тока при записи обозначается большой буквой с индексом «д», либо большой буквой I без всякого индекса.

Действующее значение напряжения питающей цепи в СССР равно 220 и 127 В. Действующее значение мощности связано с энергией, рассеиваемой в виде тепла, и определяет требования, которым должны удовлетворять элементы в схеме.

Что такое среднее значение переменного колебания?

Средним значением колебания переменного тока называется среднее арифметическое абсолютных значений этого колебания в течение одного периода[2]. В случае синусоидального колебания между средним и амплитудным значениями существует определенная связь Uср = 0,636·Um.

Среднее значение переменного тока, протекающего в цепи, определяет среднее потребление тока от источника постоянного тока, питающего данную цепь.

Что такое мгновенное значение переменного колебания?

Это значение переменного колебания, которое определяется в данный момент. В случае синусоидального колебания мгновенное значение непрерывно изменяется. При других видах колебаний изменение мгновенного значения может быть резким или постоянным на некотором отрезке времени. Мгновенное значение переменного колебания обозначается малой буквой, например u, i.

Что такое синусоидальное или гармоническое колебание?

Это такое колебание, при котором ток и напряжение изменяются во времени в соответствии с законом изменения синуса угла от 0 до 360° (рис. 1.17). Это основная форма колебания переменного тока, являющаяся прямым результатом методов его генерации, в частности на электростанциях. Электрический ток синусоидальной формы возникает в результате вращательного движения ротора генераторного агрегата. Из самого принципа действия этих агрегатов следует периодичность изменения тока в зависимости от угла поворота. Синусоидальное колебание можно создать с помощью электронных устройств, питаемых постоянным током.



Рис. 1.17. Синусоидальное колебание

Что такое несинусоидальные колебания?

В общем случае это колебания, форма которых отличается от синусоиды. Несинусоидальные колебания можно разделить на две группы:

1. Колебания, форма которых повторяется через равные промежутки времени, т. е. имеются постоянно повторяющиеся периоды.

Это периодические несинусоидальные колебания. Такие колебания — результат искажений синусоидальных колебаний (рис. 1.18). Примером могут служить колебания, полученные после прохождения синусоидального колебания через устройства с нелинейными элементами.



Рис. 1.18. Форма несинусоидального колебания на выходе нелинейной цепи


2. Колебания, форма которых в разные периоды различна или вообще не наблюдается никакой периодичности (рис. 1.19). Примером может служить периодически повторяемый с частотой повторения строк телевизионный сигнал изображения, однако в общем случае в каждом периоде он различен. Непериодическими сигналами являются электрические колебания, соответствующие, например, речи либо нерегулярным изменениям физических величин (температура и др.).



Рис. 1.19. Периодическое (а) и непериодическое (б) электрические колебания

Что такое колебание прямоугольной формы?

Это периодическое колебание, у которого оба полупериода имеют прямоугольную форму. В общем случае оба полупериода могут иметь разную длительность (рис. 1.20). Если их длительность одинакова, то говорят, что это симметричное колебание или колебание, имеющее форму меандра. Прямоугольное колебание характеризуется амплитудой (А), длительностью положительного и отрицательного импульса Т1, Т2, периодом Т = Т1 + Т2 и частотой повторения fп = 1/T = 1/(T1 + Т2). В прямоугольном колебании мы различаем фронт, срез, а также вершину импульса.



Рис. 1.20. Несимметричное (а) и симметричное (квадратное) (б) прямоугольные колебания


Прямоугольное колебание, как и другие периодические колебания, в общем случае можно рассматривать как сумму некоторой постоянной составляющей (постоянного тока) и многих синусоидальных колебаний с разными амплитудами, частотами и временным сдвигом по отношению друг к другу (рис. 1.21).



Рис. 1.21. Влияние количества гармоник на форму импульса


Углы, соответствующие взаимным сдвигам, определенные, например, относительно основной составляющей, называются фазовыми углами. Самую низкую частоту синусоидального колебания называют основной частотой. Она равна частоте данного прямоугольного колебания. Остальные синусоидальные составляющие, частоты которых являются кратными основной частоте, называются гармоническими составляющими.

Форма колебания, полученная путем суммирования синусоидальных составляющих, тем ближе к исходной, чем больше составляющих учитывается в этом процессе. Прежде всего это зависит от крутизны фронта и среза прямоугольного колебания. На практике в некоторых случаях достаточно учесть лишь несколько гармоник, а в других — при очень крутых фронте и срезе — недостаточно учета даже ста гармоник. В первом случае говорят, что частотный спектр сигнала является узким, во втором — широким. Прямоугольные колебания используют в таких областях, как цифровая и импульсная техника.

Что такое нелинейные искажения сигнала?

Это искажения, возникающие в схемах, содержащих нелинейные элементы. Гармонические нелинейные искажения связаны с появлением в выходном сигнале новыхгармонических составляющих.

На рис. 1.22 приведены примеры нелинейных искажений для синусоидального сигнала. Видно, что искажения, вызывающие, например, срез вершин синусоиды, могут приводить к получению искаженного сигнала, форма которого близка к прямоугольному колебанию. Искажения этого типа зависят от амплитуды сигнала в данной схеме и обычно тем больше, чем больше амплитуда.

Количественно гармонические искажения определяются с помощью коэффициента гармоник или коэффициента нелинейных искажений. Этот коэффициент обозначается Kг и выражается в процентах. Например, в акустических устройствах содержание гармоник ограничивается несколькими процентами, а в устройствах высококачественного воспроизведения Kг < 1 %.



Рис. 1.22. Неискаженное (а) и искаженное (б, в) синусоидальные колебания

Что такое колебание пилообразной формы?

Это колебание, в котором изменение мгновенного значения протекает во времени по линейному закону (рис. 1.23). В общем случае времена нарастания Т1 и убывания Т2 мгновенного значения колебания не равны. В некоторых применениях одно из этих времен (обычно более длительное) называется рабочим или активным временем, а другое — временем возврата или пассивным временем.

Пилообразные колебания используются в телевидении, а также в устройствах с осциллографическими электронно-лучевыми трубками.



Рис. 1.23. Пилообразное колебание

Что такое шумовое колебание?

Это колебание, мгновенное значение которого изменяется во времени по случайному закону. Накладываясь на полезное колебание, оно может привести к нежелательным эффектам. Помимо внешних, посторонних помех, таких как помехи от сетей электропитания, радиостанций, атмосферных, существуют весьма нежелательные собственные помехи или шумы, возникающие внутри устройств и проявляющиеся в виде большого количества случайных импульсов со случайным распределением частот следования и фазовых углов. Это уже не периодический, а случайный, или вероятностный, процесс.

Большую роль играют тепловые и дробовые шумы. Первые возникают в элементах цепей и зависят от сопротивления элемента и его температуры, вторые — в полупроводниковых приборах и электронных лампах и связаны, в частности, со случайным движением носителей заряда или неравномерной эмиссией электронов из катода.

Уровень шумов определяется значением их средней энергии. Шумовые свойства схем и устройств часто определяют с помощью коэффициента шума.

Что такое электрический импульс?

Дать точное определение трудно. В общем можно принять, что определение «импульс» чаще всего относится к электрическому процессу с малым временем длительности, причем само определение «малое» является относительным. Оно мало по сравнению с временем, когда импульс отсутствует (например, с временем перерыва между двумя последующими импульсами). Часто определение «импульс» используется неправильно, по отношению к половине симметричного прямоугольного колебания, даже когда ее длительность относительно велика.

Импульсы могут быть положительными или отрицательными по отношению к некоторому уровню отсчета. Могут быть одиночными или повторяющимися. Повторение импульсов может быть непериодическим или периодическим. Примеры различных импульсов приведены на рис. 1.24.



Рис. 1.24. Примеры электрических импульсов

Какие параметры характеризуют электрический импульс?

Электрический импульс характеризуется следующими основными параметрами: длительностью, частотой повторения пиковым значением (амплитудой), временем нарастания, формой колебания.

Длительность импульса определяется обычно на уровне, соответствующем половине вершины (амплитуды) импульса (рис. 1.25).

Частота повторения импульсов выражается зависимостью

fи = 1/(Т1 + Т2) = 1/T.

Пиковое, среднее и действующее значения находят так же, как и для синусоидального колебания, но очевидно, что численные значения коэффициентов отличаются и зависят от параметров импульсов.



Рис. 1.25. Определение длительности импульса

Что называется временем формирования фронта импульса?

Время формирования фронта импульса определяет крутизну фронта (при заданном значении амплитуды), выраженную в единицах времени. Чаще всего его определяют как время, за которое мгновенное значение импульса нарастает от 10 до 90 % установившегося значения (рис. 1.26). Аналогично находят и время среза (от 90 до 10 %); время формирования фронта обычно обозначают tф. Невозможно создать импульсы с tф = 0, поскольку любое физическое явление, также и нарастание тока в цепи, требует определенного времени. Длительность фронта зависит от устройства, в котором импульс был сформирован, нот элементов этого устройства, Поэтому, если говорить точно, на практике могут существовать не прямоугольные, а лишь трапецеидальные импульсы. Однако название «прямоугольные» используется повсюду по отношению к импульсам с малым временем фронта и среза по сравнению с длительностью импульса.



Рис. 1.26. Определение длительности фронта и среза импульса

Что называется выбросом импульса?

Определение «выброс импульса» относится к той части прямоугольного импульса, на которой наблюдается короткое, но резкое увеличение мгновенного значения и которая предшествует вершине, т. е. той части импульса, для которой мгновенное значение постоянно или почти постоянно (рис. 1.27). Во многих применениях наличие выбросов является нежелательным эффектом.



Рис. 1.27. Форма импульса с выбросом

Что такое спектр электрических сигналов?

Основным электрическим сигналом является синусоидальный, который в «чистом» (неискаженном) виде представляет собой периодическое колебание, точно соответствующее одиночной синусоиде без гармонических составляющих. Прямоугольное колебание и другие периодические колебания, как уже указывалось выше, можно представлять с помощью суммы ряда (теоретически бесконечного) периодических колебаний с разными частотами, амплитудами и фазовыми углами. График, представляющий набор амплитуд отдельных гармонических составляющих колебания, называют его спектром (рис. 1.28).



Рис. 1.28. Спектр прямоугольного периодического колебания


Спектр периодического колебания имеет дискретный линейный характер, т е. в нем присутствуют определенные гармонические составляющие, являющиеся целыми, кратными основной частоте f1. Обычно наибольшую амплитуду Аk имеют составляющие kf1, с относительно низкими частотами, а амплитуды высших гармоник в общем относительно малы. Можно показать, что последние возрастают, когда импульсы становятся более узкими либо когда их крутизна становится большей: время фронта убывает. Для правильного воспроизведения формы импульса электронные узлы, через которые проходят импульсы, должны иметь определенную полосу пропускания. Ширина этой полосы связана с временем фронта tф следующей зависимостью: ширина полосы не менее 1/2tф. Если время нарастания выразим в микросекундах, то ширину полосы получим в мегагерцах.

Спектр непериодического колебания, например одиночного импульса, имеет непрерывный (сплошной) характер без точно определенных гармонических составляющих. Спектр сигнала изображения в телевидении периодичен. Но форма сигнала в каждом периоде отлична и представляет набор спектральных линий, перемещающихся вблизи состояния покоя, соответствующего простому неподвижному изображению.

Глава 2 ИЗЛУЧЕНИЕ И ВОЛНЫ. СОПРОТИВЛЕНИЕ. ЭЛЕМЕНТЫ И ЦЕПИ

Что такое электромагнитное излучение?

Это распространение в пространстве электрической энергии в виде переменных электрического и магнитного полей. Связанная с этим излучением электромагнитная волна переносит электрическую энергию на расстояние. Скорость распространения электромагнитной волны в вакууме равна примерно 300 000 км/с. Электромагнитная волна характеризуется частотой или длиной полны.

Связь Между частотой f и длиной волны λ в пространстве выражается следующим образом:

λ = с·Т = c/f,

где с — скорость света. Если λ выразим в метрах, а f — в килогерцах, то λ = 3·105/f, а если / в мегагерцах, то λ = 3·102/f.

Электромагнитные волны известны и достаточно изучены в диапазоне частот практически от 0 до 1023 Гц. Спектр электромагнитных волн приведен в табл. 2.1.


На практике для радиосвязи используются волны с частотами от 104 до 1011 Гц, т. е. с длиной волны λ от 30 км до нескольких миллиметров. Классификация электромагнитных волн, применяемых в электронике и радиоэлектронике, приведена в табл. 2.2[3].



Свойства электромагнитных волн и их распространение в значительной степени зависят от длины волны.

Что такое звуковые волны?

Это возмущения, распространяющиеся в материальной среде, в основном в воздухе, и связанные с колебаниями частиц этой среды. Звуковые волны охватывают диапазон частот от 10–20 Гц (низкие звуки — басы) до 20 кГц (высокие звуки) и распространяются в воздухе со скоростью около 340 м/с. Это не электромагнитные волны, однако при использовании соответствующих преобразователей (микрофонов) звуковые волны легко удается преобразовать в электромагнитные волны той же частоты.

Электрический сигнал, соответствующий речи и музыке, называется акустическим сигналом или сигналом низкой частоты. Его можно усиливать, преобразовывать и передавать на большие расстояния, что невозможно осуществить при непосредственном использовании звуковых волн. Для преобразования электрического сигнала низкой частоты в звуковые волны применяют преобразователи, называемые громкоговорителями. В общем случае электрический сигнал, соответствующий звукам речи и музыки, не является периодическим сигналом и имеет нерегулярную форму.

Область науки и техники, занимающихся преобразованием акустической энергии в электрическую и обратно; а также передачей акустических сигналов, называется электроакустикой.

В каких единицах измеряется уровень звука?

Уровень звука можно выразить в единицах силы (интенсивности) звука — ваттах на квадратный метр, в единицах акустического давления в ньютонах на квадратный метр либо в единицах уровня громкости звучания — в фонах. Часто пользуются единицей, называемой децибелом и определяющей относительный уровень акустического давления, акустической мощности или силы звука.

Децибел — логарифмическая мера отношения двух численных значений акустических мощностей: число децибел равно 10 lg P2/P1.

Численное значение Р1 часто называется уровнем отсчета (опорным). Человеческое ухо (так же как и глаз) реагирует нелинейно на внешние стимулы, причем отклик пропорционален логарифму возбуждения. С этой точки зрения применение децибелов очень удобно. Изменение мощности звука на 1 дБ едва ощущается ухом.

Весьма часто децибелы используют также для характеристики электрических сигналов, особенно акустических. Для уровней мощностей Р2 относительно P1 имеем число децибел 10 lg P2/P1, а для уровней напряжений U2 относительно U1 с учетом того, что Р = U2/R, число децибел равно 20 lg U2/U1. В табл. 2.3 приведены наиболее часто встречающиеся значении в децибелах и соответствующие им отношения напряжений и мощностей.


Что такое световое излучение?

Это электромагнитное излучение, лежащее в диапазоне видимого света и связанное со зрительными ощущениями человеческого глаза. Частоты световых волн лежат выше самых высоких частот радиоволн. Для передачи световых изображений на расстояние свет преобразуется в электрический сигнал путем использования соответствующих преобразователей, работающих, например, на принципе фотоэмиссии. Затем с помощью радиоэлектронных средств этот сигнал можно преобразовать и передать на большие расстояния.

Применение соответствующих электрооптических преобразователей позволяет осуществить обратную задачу, т. е. преобразование электрического сигнала в световое изображение.

Областью техники, которая главным образом занимается преобразованием света в сигнал и обратно, а также передачей этого сигнала, является телевидение.

Какие параметры определяют свет?

Качественными параметрами являются цвет и насыщение. Количественным параметром является яркость. Единицей яркости является кандела на квадратный метр, единицей освещенности — люкс. Имеются и другие величины, и единицы их измерения.

Что такое полное сопротивление?

Это электрическое сопротивление, называемое иначе комплексным или кажущимся. Оно относится к цепям переменного тока, в которых помимо элементов, представляющих действительное электрическое сопротивление R, находятся элементы цепей переменного тока, т. е. конденсаторы (С), или индуктивности (L). В этом случае результирующее электрическое сопротивление такой цепи для переменного тока называется полным сопротивлением и обозначается Z. В соответствии с законом Ома Z = U/I. Величина, обратная полному сопротивлению, называется проводимостью и обозначается Y.

В общем случае полное сопротивление состоит из двух частей — действительной и мнимой. Действительная, называемая резистивным или активным сопротивлением, обозначается R. Его значение на постоянном и переменном токе будет одинаковым. При протекании постоянного или переменного тока через активное сопротивление в нем происходит выделение тепла. Величина, обратная резистивному сопротивлению, называется активной (действительной) проводимостью и обозначается G, Единицей проводимости является сименс [См] — величина, обратная ому.

Мнимая часть полного сопротивления образует пассивное сопротивление, называемое реактивным, и обозначается — X. В реактивном сопротивлении: не происходит выделения тепла, а протекающий через него ток приводит к накоплению энергии в виде электромагнитного ноля. Наличие реактивности в цепи вызывает фазовый сдвиг между током и напряжением. Различают емкостную реактивность Хс, сопротивление конденсатора С для переменного тока, и индуктивное сопротивление XL — сопротивление катушки индуктивности для переменного тока. Величина, обратная реактивному сопротивлению, называется пассивной или кажущейся проводимостью и обозначается В. Численное значение модуля Z цепи переменного тока с активным сопротивлением R и реактивным сопротивлением X определяется формулой.

Какое электрическое сопротивление имеет конденсатор?

Это зависит от вида тока. Для постоянного- тока идеальный конденсатор представляет собой сопротивление (активное) R = , не позволяющее протекать постоянному току. На переменном токе с частотой f реактивное сопротивление конденсатора С или емкостное сопротивление выражается формулой

Хс = 1/2π.

Если перейти от частоты f к ω, то

Хс = 1/ωС.

Из этой зависимости следует, что емкостное сопротивление убывает с ростом частоты тока. На очень высоких частотах емкостное сопротивление стремится к нулю.

Как уже указывалось, реактивность вызывает сдвиг фазы между током и напряжением (рис. 2.1). В результате этого сдвига (для конденсатора) ток опережает напряжение на 90°.



Рис. 2.1. Сдвиг фазы между током и напряжением на емкости

Какое электрическое сопротивление имеет катушка индуктивности?

Для постоянного тока идеальная индуктивность обладает нулевым сопротивлением R = 0. Для переменного тока с частотой f индуктивное сопротивление выражается зависимостью XL = 2πfL или XL = ωL, т. е. индуктивное сопротивление с ростом частоты увеличивается.

Фазовый сдвиг, вызываемый индуктивностью, таков, что напряжение опережает ток на 90° (рис. 2.2).



Рис. 2.2. Сдвиг фазы между током и напряжением на индуктивности

Из каких элементов состоят электрические цепи?

Элементы электронных схем можно разделить на две группы: активные и пассивные. Активными называют такие элементы, которые могут увеличивать энергию подводимого сигнала (транзисторы и лампы). Пассивные элементы не дают увеличения мощности. К ним относятся резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды[4], переключатели и т. п.

Резистор как элемент схемы

Резистор — элемент схемы, вносящий в цепь определенное постоянное или переменное (регулируемое) сопротивление. Элементы с постоянным сопротивлением чаще всего изготавливают в виде проволочных и пленочных резисторов. Проволочные резисторы выполняют путем навивки провода с высоким сопротивлением на керамический корпус, а пленочные — посредством напыления соответствующих металлических сплавов на керамические столбики (цилиндрики) или трубки. Резистор (рис. 2.3) характеризуют в основном следующие параметры: сопротивление и его допуск; допустимая мощность (рассеяния).



Рис. 2.3. Графическое изображение постоянного (а) и переменного (б) резисторов


Основной единицей сопротивления является ом (Ом]. Часто используется в тысячу раз большая единица, называемая килоомом [кОм] и в миллион раз большая — мегом [МОм]. В электронике используют резисторы с сопротивлениями от нескольких ом до нескольких десятков мегом.

В СССР и ПНР в крупносерийном производстве находятся резисторы с допусками на номинальное значение ±30, ±20, ±10, ±5 % и менее. Для каждого допуска существует подобранный ряд номинальных сопротивлений. Так, для допуска ± 20 % выпускают резисторы с сопротивлениями 10, 15, 22, 33, 47, 68 Ом и сопротивлениями, полученными путем умножения этих номиналов на 0,1, 10, 100, 1000 и более. Для допусков ± 10 % ряд номинальных сопротивлений в 2 раза больше.

Аналогично стандартизованы номинальные значения максимально допустимой мощности резисторов, связанные с допустимой рабочей температурой. Различают резисторы, для которых максимальная выделяющаяся мощность при температуре окружающей среды 20 °C может иметь значения: 0,125, 0,25, 0,5, 1, 2, 3 Вт и более. Выделяющаяся мощность в резисторе, работающем в цепи, рассматривается обычно по току, протекающему в ней (Р = I2R). В случае, если в цепи течет только переменный ток, учитывается его действующее значение, а при протекании постоянного и переменного тока значение тока, требующееся для определения мощности, выделяемой в резисторе в виде тепла, определяют с учетом постоянной составляющей тока и действующего значения переменной составляющей[5]. Допустимое значение тока при определенной мощности резистора при заданной температуре окружающей среды можно рассчитать по закону Ома.

Помимо резисторов с постоянным сопротивлением существуют переменные или регулируемые резисторы (потенциометры). Они допускают плавную регулировку сопротивления путем вращения оси, связанном с движком, скользящим по поверхности, покрытой резистивным слоем. Изменения сопротивления в зависимости от угла поворота могут происходить по линейному, логарифмическому или экспоненциальному закону. Переменные, так же как и постоянные, резисторы могут быть выполнены проволочными или пленочными.

Реальные резисторы помимо чисто активного сопротивления обладают также некоторой собственной емкостью и индуктивностью, которые образуют паразитные реактивности. Особенно это относится к проволочным элементам. Во многих случаях применения существование реактивностей крайне нежелательно.

Определение результирующего сопротивления при последовательном и параллельном соединении резисторов поясняется на рис. 2.4.



Рис. 2.4. Определение результирующего сопротивления при последовательном (а) и параллельном (б) соединении резисторов

Что можно сказать о конденсаторе как элементе цепи?

Конденсатор — это элемент, вносящий в цепь определенную постоянную или регулируемую емкость. Он состоит из двух проводящих обкладок, изолированных одна от другой диэлектриком.

В зависимости от конструкции и вида диэлектрика различают конденсаторы с воздушным зазором, бумажные, полистироловые, керамические, электролитические и т. п. Они имеют разные свойства и габаритные размеры, разное назначение и области применения. Конденсаторы (рис. 2.5) характеризуются в основном следующими параметрами: емкость и ее допуск, рабочее напряжение диапазон рабочих температур и температурный коэффициент емкости, потери и добротность.



Рис. 2.5. Графическое изображение постоянного (а), электролитического (б), переменного (в) и подстроечного (г) конденсаторов


Основная единица емкости — фарада [Ф]. Это очень большая емкость, и поэтому на практике обычно используют значительно меньшие единицы: 10-12 Ф, 1 пФ — пикофарада, 10-9 Ф — 1 нФ — нанофарада, 10-6 Ф, 1 мкФ — микрофарада.

В электронике применяют элементы с емкостями от нескольких пикофарад до нескольких тысяч микрофарад. Емкость конденсатора возрастает при увеличении площади обкладок и убывает при увеличении расстояния между ними. Увеличение площади обкладок приводит к свернутой или многослойной конструкции конденсатора.

При производстве конденсаторов применяются такие же допуски и ряды номинальных значений емкости, как для резисторов. Для электролитических конденсаторов используется укороченный ряд значений.

Конструкция конденсатора ограничивает рабочее напряжение поскольку при очень большом напряжении происходит пробой диэлектрика и конденсатор выходит из строя. Интервал рабочих напряжений конденсаторов обусловлен их назначением и конструкцией.

Так, электролитические конденсаторы с емкостью порядка сотен микрофарад, используемые в цепях питания постоянного тока, предназначены для работы при напряжениях в несколько десятков или даже сотен вольт.

Диапазон рабочих температур конденсатора зависит прежде всего от вида его диэлектрика. Изменение температуры влияет также на емкость конденсатора. Это очень важно, и поэтому выбор конденсатора часто определяется температурным коэффициентом емкости, который в зависимости от используемых материалов и технологий может иметь положительное или отрицательное значение. В цепях, где важен «результирующий» температурный коэффициент, температурный коэффициент конденсатора выбирается таким, чтобы изменения емкости в функции температуры компенсировали изменения индуктивности; благодаря этой компенсации сопротивление цепи RLC остается постоянным.

Помимо емкости конденсаторы обладают некоторой собственной индуктивностью и активным сопротивлением. Наличие последнего вызывает потери, связанные с преобразованием электрической энергии в тепловую. Потери энергии в конденсаторе характеризуются тангенсом угла диэлектрических потерь tg δ; величина, обратная этому коэффициенту, называется добротностью конденсатора.

Во многих применениях добротность является решающим фактором при выборе типа конденсатора. Помимо конденсаторов с постоянной емкостью существуют переменные (регулируемые) конденсаторы с плавной регулировкой емкости, обычно до нескольких десятков или сотен пикофарад. Они служат главным образом для перестройки резонансных контуров.

Определение результирующей емкости при последовательном и параллельном соединении конденсаторов поясняется на рис. 2.6.



Рис. 2.6. Определение результирующей емкости при последовательном (а) и параллельном (б) соединении конденсаторов

Как рассчитывается реактивное сопротивление конденсатора?

Реактивное сопротивление конденсатора определяется по формуле

Хс = 1/2π.

Если емкость выражается в фарадах, а частота в герцах, то реактивное сопротивление получается в омах. Результат в омах получается также при подстановке емкости в микрофарадах и частоты в мегагерцах. Для других единиц необходим пересчет. Например, для С = 100 нФ и f = 100 кГц следует его произвести по формуле

Хс = 1/6,28·(102·103)·(102·10-9) = 1/6.28·10-2 ~= 16 Ом.

Как маркируются резисторы и конденсаторы?

Существует два способа маркировки или обозначения на резисторах и конденсаторах их значений и допусков. Один из них — цветовой, второй — буквенно-цифровой.

В цветовом коде (табл. 2.4) используются четыре цветные полоски или точки. Цвета первой и второй полосок определяют первую и вторую цифры, а цвет третьей полоски — коэффициент кратности для величины, выраженной в омах или пикофарадах. Последняя полоска или точка определяет своим цветом допуск на эту величину.



На рис. 2.7 приведен пример обозначения резисторов.



Рис. 2.7. Пример цветового обозначения резистора с сопротивлением 22кОм±10 %

1 — оранжевый (коэффициент кратности 103; 2 — серебряный (допуск ±10 %); 3 — красный (вторая цифра) — 2; 4 — красный (первая цифра) — 2


В буквенно-цифровом коде обозначения кратности используются буквы. Для резисторов применяют следующие обозначения кратности: 1 — буква R, 103К, 106M, а для конденсаторов; 10-12 р, 10-9n, 10-6μ. Буквы занимают место запятой десятичного знака в номинальном значении. Например, 5,9 Ом — обозначение 5R9, 59 Ом — 59R, 1,5 кОм — 1К5, 59 кОм —59К, 1,5 МОм — 1М5, а также 1,5 пФ — 1р5, 33,2 пФ — 33р2.

Буквенно-цифровая маркировка резисторов и конденсаторов в СССР состоит из последовательно расположенных цифр, указывающих номинальное сопротивление (емкость), буквы, обозначающей единицу измерения (кратность) сопротивления при емкости и показывающей положение запятой десятичной дроби, и буквы, обозначающей допустимое отклонение от номинального значения. Для резисторов приняты следующие обозначения кратности номинального сопротивления: Е — омы, К — килоомы, М — мегомы, Г — гигаомы, Т — тераомы, а для номинальной емкости: П — пикофарады, Н — нанофарады, М — микрофарады. Кодированные обозначения допускаемого отклонения сопротивления и емкости приведены в табл. 2.5. Например, резисторы с сопротивлением 68 Ом и 1,5 кОм и допустимым отклонением ±2 % имеют соответственно маркировку 68ЕЛ и 1К5Л, а емкость 1,5 мкф с допустимым отклонением ±20 % сокращение обозначается 1М5В. — Прим. ред.


Что можно сказать о катушке индуктивности как элементе схемы?

Катушка индуктивности является элементом, вносящим в цепь определенную постоянную или регулируемую индуктивность. Катушку индуктивности часто выполняют навивкой проволоки на корпус, сделанный из изолятора. Навивка может быть одно- или многослойной. Катушки бывают воздушными (бессердечниковыми) либо с магнитным сердечником. Катушки индуктивности (рис. 2.8) в основном характеризуются следующими параметрами: индуктивностью и добротностью.



Рис. 2.8. Графическое изображение катушек индуктивности с постоянной (а), переменной (б) индуктивностью и с ферритовым сердечником (в)


Основной единицей индуктивности является генри [Гн]. Чаще используются в тысячу раз меньшая единица, называемая миллигенри [мГн], и в миллион раз меньшая единица — микрогенри [мкГн]. Индуктивность катушки возрастает с увеличением ее размеров и числа витков. Воздушные катушки имеют индуктивность от 1 Гн до нескольких десятков миллигенри. Большие значения индуктивности (даже несколько тысяч генри) получают, когда катушки индуктивности выполняют на ферромагнитных стержнях. Регулировка индуктивности чаще всего выполняется перемещением сердечника относительно навивки (например, путем вворачивания или выворачивания сердечника отверткой).

Кроме индуктивности катушки обладают некоторой емкостью зависящей от распределения навивки, и некоторым активным сопротивлением (рис. 2.9), отражающим потери энергии в катушке (в навивке, корпусе, сердечнике). Сопротивление потерь увеличивается при росте частоты.



Рис. 2.9. Эквивалентная схема реальной катушки индуктивности


Добротность катушки определяется как отношение индуктивного сопротивления к сопротивлению потерь (последовательному):

Q = XL/R = 2πfL/R.

Добротность изменяется в зависимости от частоты, габаритных размеров и формы катушки, материала корпуса, типа навиваемого провода, свойств сердечника. Добротность катушек составляет 50—200. Большой добротностью в диапазоне высоких частот обладают воздушные катушки, навитые на керамический корпус.

Индуктивными элементами являются также дроссели и трансформаторы. Дросселями называются катушки, задача которых создать в цепи большое сопротивление для переменного тока, чтобы подавить токи определенных частот. В частности, дроссели применяются в фильтрах источников питания.

Определение результирующего значения индуктивности при последовательном и параллельном соединении катушек пояснено на рис. 2.10.



Рис. 2.10. Определение результирующей индуктивности при последовательном (а) и параллельном (б) соединении катушек

Трансформатор как элемент цепи

Трансформатор является индуктивным элементом, состоящим по меньшей мере из двух обмоток, предназначенных для передачи энергии из первичной обмотки во вторичную. В электронных устройствах трансформатор чаще всего служит для повышения или понижения напряжения (в выпрямителях в устройствах питания), а также для согласования нагрузки, подключенной ко вторичной обмотке трансформатора, сопротивлением источника, подключенного к первичной обмотке. Часто трансформаторы используют в качестве элементов связи в усилителях. Мощности используемых в электронных устройствах трансформаторов редко превышают 100 Вт. Отношение числа витков вторичной обмотки n2 к числу витков первичной n1 называется передаточным отношением р или коэффициентом трансформации Ктр трансформатора. Для идеального трансформатора, т. е. трансформатора без потерь, имеем следующие соотношения (рис. 2.11): передаточное отношение р = n2/n1U2/U1; передаваемая мощность[6] р = U22/R2 = p2U21/R2.

Согласование сопротивления нагрузки R2 с сопротивлением источника R1 бывает в том случае, когда сопротивление R1, «видимое» со стороны источника или пересчитанное на первичную обмотку трансформатора и зависящее от передаточного отношения трансформатора, равно сопротивлению источника

R = R2/p2 = R1



Рис. 2.11. Трансформатор, нагруженный на сопротивление

Какие преобразователи встречаются в электронных устройствах?

Существует много видов преобразователей. Их задача — преобразование энергии одного вида в другой. Электроакустические преобразователи (рис. 2.12) преобразуют акустическую энергию, например речи или музыки, в электрическую или наоборот. В первом случае это микрофоны, во втором — громкоговорители и телефоны. Существуют также преобразователи, обеспечивающие возможность записи звуковых сигналов и изображении, в том числе на магнитной ленте, на пластинке (записывающие головки), а также преобразователи для воспроизведении записанного звука и изображения, на пример в электропроигрывателях, магнитофонах, видеомагнитофонах.

В телевидении используют преобразователи, которые преобразуют в передающей камере (передающие электронно-лучевые трубки) оптическое (световое) изображение и электрический сигнал, а также в приемнике (кинескопы приемные трубки) электрическим сигнал в световое изображение.



Рис. 2.12. Графическое изображение электроакустических преобразователей микрофона (а), громкоговорителя (б) и наушников (в)

На каком принципе работает микрофон?

Это зависит от типа микрофона, но в общем случае можно сказать, что преобразование энергии звука, попадающего на микрофон, в электрическую энергию происходит на принципе использования пружинной мембраны, колеблющейся под влиянием энергии звуковых волн, которая вызывает изменение тока, протекающего в цепи микрофона в такт с воздействующими на эту мембрану волнами.

Динамический микрофон (рис. 2.13) действует на принципе возникновения электродвижущей силы в катушке, перемещающейся в магнитном поле. Катушка соединена с колеблющейся мембраной, а магнитное поле создается постоянным магнитом.



Рис. 2.13. Упрощенная конструкция динамического микрофона:

1 — колеблющаяся мембрана; 2 — витки катушки; 3 — постоянный магнит


Угольный микрофон (рис. 2.14) применяется, в частности, в телефонных трубках. Колеблющаяся в нем мембрана изменяет электрическое сопротивление угольного порошка, прижимаемого мембраной, что в свою очередь вызывает изменение тока, протекающего через порошок.



Рис. 2.14. Конструкция угольного микрофона:

1 — колеблющаяся мембрана; 2 — зерна угольного порошка; 3 — корпус


Емкостный микрофон работает на принципе использования колеблющейся мембраны в качестве одной из обкладок конденсатора. Колебания мембраны изменяют емкость, что в свою очередь вызывает изменение падения напряжения на резисторе, включенном в цепь микрофона.

Существуют и другие типы микрофонов. Они отличаются конструкцией и параметрами, такими как чувствительность (точнее эффективность), полоса акустических частот, выходное сопротивление источника сигнала, направленные свойства и др.

На каком принципе работает громкоговоритель?

Это зависит от типа громкоговорителя. В случае динамического громкоговорителя (рис. 2.15) электрический ток на акустических частотах, протекающий через обмотку катушки, размещенный в поле постоянного магнита или электромагнита, вызывает колебания этой катушки. Катушка соединена с конусообразной мембраной (чаще всего из бумажной массы). Колебания мембраны вызывают в свою очередь возникновение звуковых волн.



Рис. 2.15. Упрощенная конструкция динамического громкоговорителя:

— колеблющаяся мембрана; 2 — колеблющаяся катушка; 3 — постоянный магнит; 4 — подвеска мембраны


Существуют также другие типы громкоговорителей. Важными параметрами громкоговорителя являются: допустимая акустическая мощность, КПД, сопротивление громкоговорителя как нагрузки схемы, управляющей громкоговорителем.

Верное воспроизведение всего диапазона акустических частот одним громкоговорителем при современном уровне техники оказывается невозможным, и поэтому в устройствах высококачественного воспроизведения применяют комплекты громкоговорителей, содержащие подобранные соответствующим образом громкоговорители для низких и высоких частот. Обычно громкоговорители, хорошо воспроизводящие низкие частоты, значительно больше по размерам, чем громкоговорители для воспроизведения высоких частот.

На каком принципе работают преобразователи изображения?

Преобразователь, превращающий оптическое изображение в электрический сигнал и применяемый в телевизионной камере, работает на принципе использования явления фотоэмиссии или фотопроводимости.

Во втором случае в передающей трубке, называемой видиконом, оптическое изображение, проектируемое объективом на пластинку со слоем фоторезистора, изменяет сопротивление в различных ее местах в зависимости от интенсивности света, падающего в данное место. Увеличение интенсивности света вызывает убывание сопротивления. При проектировании изображения на пластинке возникает определенное распределение потенциала, зависящее от распределения света и теней в проецируемом оптическом изображении. В трубке имеется электронный луч, который направлен на пластинку и перемещается по ней по определенному закону. Перемещаясь, луч попадает на точки с разным потенциалом, что вызывает протекание через пластину тока, значение которого в каждый момент зависит от сопротивления в данной точке, т. е. от количества света, падающего на точку. Таким образом, получают ток, изменяющийся в зависимости от распределения светлых и темных точек пространства.

Преобразование электрического сигнала в оптическое изображение происходит в приемных трубках, называемых кинескопами. Принцип действия кинескопа тот же, что и осциллографических трубок. Электронный луч воздействует на экран, покрытый материалом, светящимся под его воздействием. Интенсивность свечения зависит от тока луча, который в свою очередь зависит в каждый момент от мгновенного значения управляющего трубкой сигнала, полученного от передающей трубки.

Что такое электронные цепи и схемы?

Это комбинации, образующиеся в результате соединения электрических элементов. В общем случае определение «цепь» применяется по «отношению» к простым комбинациям элементов, а определение «схема» — к более сложным, однако такое деление строго и последовательно не соблюдается.

Цепи и схемы делятся на разные группы в зависимости от принципа действия, функции, технологии, свойств и т. п. В дальнейшем мы познакомимся с определением и сущностью цепей и схем, называемых линейными и нелинейными, активными и пассивными, логическими и цифровыми, резонансными, связанными, печатными, интегральными и др.

Что такое линейные и пассивные цепи?

Линейные цепи — это цепи, состоящие только из линейных элементов, т. е. таких, для которых зависимость между напряжением и током является линейной. В общем случае линейными элементами не являются транзисторы, лампы, катушки индуктивности, трансформаторы с сердечником и преобразователи. На практике цепи, содержащие нелинейные элементы и называемые нелинейными, рассматриваются приближенно как линейные, особенно при работе с малыми уровнями сигналов.

Пассивными цепями называются цепи, не содержащие активных элементов, т. е. элементов, повышающих уровень энергии подводимого сигнала, таких как, например, транзистор или лампа.

Что такое интегрирующая цепь?

Это линейная цепь (рис. 2.16, а), используемая для изменения формы подводимого сигнала. Форма выходного сигнала при возбуждении такой цепи прямоугольным импульсом представлена на рис. 2.16, б. Скорость нарастания фронта выходного сигнала зависит от постоянной времени τ = RC или τ = L/R. Чем больше постоянная времени, тем сильнее форма выходного сигнала отличается от формы входного сигнала.

Интегрирующую цепь можно рассматривать как фильтр, пропускающий низкочастотные составляющие сигнала и подавляющий составляющие более высоких частот, т. е. как фильтр нижних частот.




Рис. 2.16. Примеры простых интегрирующих цепей (а) и форма импульса (б) на выходе

Что такое дифференцирующая цепь?

Это линейная схема (рис. 2.17, а), используемая для изменения формы подводимого сигнала. При подаче прямоугольного импульса на выходе цепи получают сигнал, форма которого показана на рис. 2.17, б. Изменение формы сигнала тем больше, чем меньше постоянная времени цепи τ = RC или τ = L/R.

Дифференцирующую цепь можно рассматривать как фильтр, пропускающий высокочастотные составляющие сигнала и подавляющий низкочастотные составляющие, т. е. как фильтр верхних частот.




Рис. 2.17. Примеры простых дифференцирующих цепей (а) и форма импульса (б) на выходе

Что такое цепь с параллельным резонансом?

Это цепь, состоящая из катушкииндуктивности и конденсатора, соединенных параллельно. Если учесть потери в катушке и конденсаторе как сопротивление R, то такую цепь можно представить в виде, показанном на рис. 2.18, а. Полное сопротивление этой цепи зависит от частоты (рис. 2.18, б).



Рис. 2.18. Цепь с параллельным резонансом (а) и зависимость полного сопротивления цепи (б) от частоты


Наибольшее значение достигается при частоте собственных колебаний цепи, называемой резонансной частотой и выражаемой формулой


где L — и генри, С — в фарадах, а результат получаем в герцах Резонансное сопротивление (или динамическое) имеет чисто резистивный характер, а его значение рассчитывают по формуле

Zрез = L/RC

На частотах, меньших резонансной, сопротивление цепи имеет характер индуктивной реактивности, на больших — емкостной реактивности. Если сопротивление потерь мало, а добротность Q катушки и всей цепи высока, кривая, представляющая изменение сопротивления Z, получается узкой и высокой. Условием сохранения узкой и крутой резонансной кривой является возбуждение цепи от источника с соответственно большим внутренним сопротивлением (Zвн >> Zрез). Важно также, чтобы сопротивление нагрузки, подключенной на выходе цепи, было достаточно высоким. Если эти условия не выполняются, то даже при большом значении Q самой цепи резонансное сопротивление снижается из-за нагружения цепи сопротивлением источника или нагрузки, а резонансная кривая расширяется и снижается.

Цепи с параллельным резонансом находят широкое применение в электронике и радиоэлектронике, в частности в усилителях и генераторах.

Что такое цепь с последовательным резонансом?

Это цепь, состоящая из катушек индуктивности и конденсатора, соединенных последовательно. Если учесть потери в катушке и конденсаторе (сопротивление R), то такую цепь можно представить в виде, показанном на рис. 2.19, а. Полное сопротивление такой цепи зависит от частоты (рис. 2.19, б) и достигает наименьшего значения Z = R на частоте собственных колебаний, выражаемой той же формулой, что и в случае параллельного резонанса. На частотах, меньших резонансной, сопротивление пони имеет емкостной характер, на больших индуктивный. Чем больше добротность цепи, тем меньше сопротивление при резонансе и тем уже кривая изменения сопротивления.



Рис. 2.19. Цепь с последовательным резонансом (а) и зависимость полного сопротивления цепи (б) от частоты

Что такое частотная характеристика?

Это график или аналитическое выражение, представляющее для данной цепи или устройства зависимость тока, напряжения или коэффициента усиления от частоты подводимого к нему синусоидального колебания. Частотная характеристика называется иногда передаточной характеристикой. Можно рассматривать график изменения фазового угла от частоты, называемой частотной характеристикой фазы или фазовой характеристикой.

Примеры частотных и фазовых характеристик для нескольких цепей показаны на рис. 2.20. Для двух первых цепей приведено изменение отношения напряжений U2/U1, выраженное и децибелах, а для третьей — изменение тока, протекающего в цепи, в функции частоты.





Рис. 2.20. Частотные и фазовые характеристики дифференцирующей (а), интегрирующей (б) цепей и цепи с параллельным резонансом (в)

Что такое линейные искажения цепи?

Это искажения сигнала, возникающие в электронных цепях (линейных и нелинейных), связанные с тем, что синусоидальные сигналы с различными частотами передаются с разным затуханием (усилением) и разным отставанием по фазе. В результате этих искажении частотная характеристика отличается от линейной плоской характеристики так, как показано на рис. 2.20.

Что такое ширина полосы пропускания цепи?

Это полоса частот, заключенная между граничными частотами и численно равная разности этих частот (рис. 2.21). Граничные частоты — такие частоты, на которых разность ординат на резонансной характеристике относительно отсчет нон частоты имеет точно определенное условное значение, равное, например, 3 дБ. Отсчетной частотой для данной цепи может быть средняя (центральная), резонансная или какая-нибудь другая частота. Из двух граничных частот частоту, имеющую меньшее значение, называют нижней граничной частотой, а имеющую большее значение — верхней граничной частотой.

В случае резонансной цепи ширина полосы пропускания тем меньше, чем больше добротность цепи.



Рис. 2.21. Определение ширины полосы цепи

Что такое импульсная характеристика цепи?

Импульсной характеристикой цепи называется электрический сигнал, получаемый на выходе при возбуждении цепи прямоугольным импульсом большой длительности с очень коротким временем фронта. Такой импульс называется единичным скачком, а сигнал, полученный после возбуждения цепи таким скачком, называется откликом на единичный скачок или ступенчатым откликом.

Пример сигнала отклика показан на рис. 2.22.



Рис. 2.22. Пример отклика единичный скачок


Отклик по своей форме отличается от возбуждающего колебания и позволяет оценивать динамические свойства исследуемой цепи.

Если амплитуда возбуждающего сигнала такова, что нелинейные искажения не возникают (например, ограничение), то отклик связан с линейными искажениями, вносимыми цепью. В сигнале отклика можно определить время фронта (см. рис. 1.26) и размер выброса (см. рис. 1.27).

Между частотной характеристикой и откликом существует взаимосвязь, однако математически она достаточно сложна. В общем случае можно утверждать, что чем больше ширина полосы пропускания данной цепи, тем форма отклика меньше отличается от формы возбуждающего сигнала.

Глава 3 ДИОДЫ

Что такое диод?

Диод — простой электронный прибор с двумя электродами, имеющий несимметричную характеристику выходного тока, протекающего через него и зависящего от входного напряжения (амплитуды и полярности) (рис. 3.1).



Рис. 3.1. Условные графические обозначения полупроводникового (а), вакуумного (б) диодов и вольт амперная характеристика диода (в)


Такая характеристика позволяет использовать диод во многих электронных устройствах в качестве элемента, который легко пропускает ток в одном направлении и почти не пропускает в противоположном, в частности для выпрямления переменных и детектирования модулированных колебаний и т. п.

Различают полупроводниковые и ламповые диоды. Полупроводниковый диод работает на принципе использования свойств р-n перехода, возникающего при соединении полупроводников n- и р-типов.

Что такое плоскостной диод?

Плоскостной диод (или иначе диод с р-n переходом) — полупроводниковый прибор, образованный р-n переходом с двумя металлическими контактами (выводами), присоединенными к р- и n-областям (рис. 3.2, а) и хорошо проводящими электрический ток (омические контакты). Контакты выводятся наружу из корпуса диода и называются анодом и катодом (рис. 3.2, б). Графическое изображение полупроводникового диода и способы обозначения катода показаны на рис. 3.2, в.



Рис. 3.2. Графические изображения для р-n перехода диода (а), его выводов (б) и других полупроводниковых диодов (в)

Какие явления происходят в р-n переходе без смещения?

Полупроводники р и n, образующие переход, отличаются типом основных носителей и их концентрацией. В области p-типа акцепторные примеси увеличивают концентрацию дырок, а в области n-типа донорные примеси обеспечивают преимущественную концентрацию электронов (рис. 3.3).



Рис. 3.3. Явления в р-n переходе:

а — начальное состояние p- и n- слоев; б — распределение зарядов в р-n переходе перед установлением равновесного состояния; в — распределение объемных зарядов в р-n переходе в равновесном состоянии; г — распределение потенциала; д — направления движения неосновных носителей через переход


Соединение полупроводников обоих типов с разной концентрацией вызывает протекание (диффузию) основных носителей через переход: дырки из p-области переходят в n-область, а электроны из n-области диффундируют в р-область. На большом расстоянии от перехода происходит рекомбинация (повторное соединение) дырок и электронов, в то же время вблизи перехода в полупроводнике n-типа наблюдается избыток положительных зарядов, образованных неподвижными положительными ионами доноров, а в полупроводнике р-типа — избыток отрицательных зарядов, образованных неподвижными отрицательными ионами акцепторов. В результате вблизи перехода возникает пространственный заряд ионов, создающий электрическое поле на переходе и вызывающий появление потенциального барьера, который препятствует дальнейшему протеканию основных носителей после достижения состояния равновесия. При этом состоянии n-область заряжена положительно относительно p-области. Существующий в переходе запирающий слой делает невозможным протекание основных носителей заряда, однако не препятствует протеканию через переход в противоположном направлении неосновных носителей, т. е дырок из n- в р- и электронов из р- в n-область.

Какие явления происходят в р-n переходе при подаче смещения?

К р-n переходу можно подвести внешнее напряжение от источника постоянного тока. В результате получают переход со смещением. Имеются две возможности смещения, которые зависят от полярности подключения источника к переходу. На рис. 3.4, а показан переход, смещенный в проводящем направлении. В этом случае источник действует таким образом, что положительный полюс «вытягивает» электроны из полупроводника p-типа во внешнюю цепь и «отталкивает» дырки, тогда как отрицательный полюс поставляет электроны в полупроводник n-типа и притягивает дырки. В связи с этим в полупроводнике происходит перемещение (диффузия) основных носителей: дырок из р-области в n-область и электронов из n-области в p-область. Ток, протекающий в цепи в результате диффузии основных носителей, называют диффузионным током. Следовательно, действие внешнего источника таково, что в результате увеличения числа основных носителей вблизи перехода оно нейтрализует пространственный заряд в запирающем слое, т. е. уменьшает ширину этого слоя и снижает потенциальный барьер, который до подключения источника препятствовал протеканию основных носителей заряда в полупроводнике после достижения равновесного состояния. Уменьшение потенциального барьера приводит к дальнейшему росту числа основных носителей, диффундирующих через переход.



Рис. 3.4. р-n переход, смещенный в прямом (а) и обратном (б) направлениях


Независимо от движения основных носителей в р-n переходе существует также перемещение неосновных носителей в противоположном направлении. Ток, протекающий в цепи в результате движения неосновных носителей заряда, называют обратным током (или тепловым). При смещении в проводящем направлении диффузионный ток значительно больше, чем обратный.

При подключении источника противоположной полярности (рис. 3.4, б) переход смещается в обратном направлении. В этом случае дырки, находящиеся в области n-типа, движутся в направлении отрицательного полюса батареи через полупроводник p-типа, а электроны из полупроводника р-типа — в направлении положительного полюса батареи через полупроводник n-типа. Это движение неосновных носителей. Такое смещение вызывает расширение запирающего слоя и повышение потенциального барьера для основных носителей. При такой ситуации протекание основных носителей становится полностью невозможным, и во внешней цепи протекает лишь относительно малый обратный ток.

Каковы свойства плоскостного диода?

Свойства плоскостного (полупроводникового) диода определяются явлениями, происходящими в р-n переходе. На рис. 3.5 показана характеристика типичного плоскостного диода, представляющая зависимость постоянного тока, протекающего через диод, от постоянного напряжения, подводимого к диоду. Для малых напряжений в проводящем направлении ток равен нулю. Когда напряжение таково, что преодолевается потенциальный барьер в переходе, ток начинает возрастать, сначала незначительно, а затем почти линейно.

Напряжение, необходимое для преодоления потенциального барьера (пороговое значение), составляет около 0,2 для германиевых и 0,7 Б для кремниевых диодов. При отрицательных напряжениях, смещающих диод в обратном направлении, существует относительно небольшой обратный ток, возрастающий с ростом температуры. Этот рост особенно велик для кремниевых диодов, однако обратный ток для германиевых диодов значительно больше. Обратные токи для типовых плоскостных диодов лежат обычно в пределах от микроампер до пикоампер, в то же время токи, протекающие в прямом направлении при напряжении, не превышающем нескольких вольт, составляют от нескольких миллиампер до нескольких ампер.



Рис. 3.5. Вольт-амперная характеристика плоскостного диода


Кроме вольт-амперной характеристики параметры диода определяют также указанием сопротивления в рабочей точке. Сопротивление диода в очень большой степени зависит от выбора рабочей точки, поскольку в общем зависимость тока от напряжения нелинейна.

Сопротивление полупроводникового диода в прямом направлении обычно лежит в интервале от нескольких десятков до нескольких ом, а в обратном направлении достигает нескольких сотен килоом и более.

Сопротивление диода в рабочей точке называется статическим сопротивлением или сопротивлением по постоянному току и определяется как отношение напряжения на аноде диода к току, протекающему через диод в этой точке, Rст = U/I. Во многих применениях, например при подведении переменного напряжения к диоду, работающему в определенной рабочей точке, важно определить сопротивление диода, указывающее ход характеристики вблизи рабочей точки. В связи с этим вводится понятие динамического сопротивления (или дифференциального), определяемого наклоном касательной к характеристике диода в рабочей точке. Наклон определяется как отношение приращений напряжения и тока вблизи этой точки.

Что такое точечный диод?

Это полупроводниковый диод, в котором вместо плоской конструкции используется конструкция, состоящая из пластины полупроводника типа n или р, образующей один электрод, и металлического проводника в виде острия, являющегося другим электродом. При сплавлении острия с пластинкой образуется микропереход. Характеристика точечного диода представлена на рис. 3.6. По сравнению с плоскостным диодом падение напряжения на точечном диоде в прямом направлении очень мало (малое сопротивление).

Ток в обратном направлении значительно меняется в зависимости от напряжения. Точечные диоды обладают малой межэлектродной емкостью и часто используются для выпрямления малых токов высокой частоты.



Рис 3.6. Вольт-амперная характеристика точечного диода

Что такое диод Шотки?

Это плоскостной полупроводниковый диод с переходом металл-полупроводник вместо р-n перехода. Проводимость диода основывается на протекании основных носителей в отличие от р-n переходов, в которых ток в проводящем направлении возникает в связи с движением неосновных носителей заряда. При использовании полупроводника n-типа основными носителями являются электроны, протекающие в слой металла. По сравнению с точечным диодом диод Шотки (рис. 3.7) имеет более крутую характеристику в области малых напряжений в прямом направлении, значительно меньший обратный ток, меньший разброс параметров, большую надежность и высокую устойчивость к ударам, а также меньшее сопротивление в прямом направлении, но несколько большую паразитную емкость.

Кроме того, диод Шотки обладает малой инерционностью, что делает его пригодным для работы в качестве переключателя и в диапазоне высоких частот. Малая инерционность является следствием того, что накопленный в переходе металл — полупроводник заряд очень мал по сравнению с зарядом, который накапливается n плоскостном диоде с р-n переходом в режиме проводимости.

Диоды Шотки часто применяют в детекторах и смесителях в диапазоне частот вплоть до 2000 ГГц.



Рис. 3.7. Вольт-амперные характеристики диода Шотки (кривая 1) и точечного диода (кривая 2)

Какая разница в свойствах плоскостного и точечного диодов?

Разница в свойствах германиевых и кремниевых плоскостных диодов и точечных диодов непосредственно вытекает из сравнения вида типичных вольт-амперных характеристик, приведенных на рис. 3.8.



Рис. 3.8. Типичные вольт-амперные характеристики германиевого (кривая 1) и кремниевого (кривая 2) плоскостных диодов, а также точечного диода (кривая 3)

Что такое идеальный диод?

Идеальным диодом называют обычно диод с характеристикой, представленной на рис. 3.9. Резкий излом характеристики, состоящей из двух прямых отрезков, наблюдается при напряжении, равном нулю. С точки зрения эквивалентной схемы такой диод представляется нулевым сопротивлением в прямом направлении и бесконечно большим сопротивлением в обратном направлении. В некоторых применениях, например при детектировании, почти идеальным считается диод с прямолинейной характеристикой, представленной пунктирной линией на рис. 3.9.



Рас. 3.9. Вольт-амперная характеристика идеального диода


Такой диод при работе в прямом направлении аналогичен постоянному сопротивлению малого значения. В эквивалентной схеме идеального диода отсутствуют паразитные емкость и индуктивность, поэтому работа такого диода не зависит от частоты.

Характеристики реальных диодов (см. рис. 3.8) отличаются от характеристики идеального диода. Они обладают большой нелинейностью и большим изменением сопротивления, особенно в диапазоне малых напряжений в прямом направлении, и не имеют резкого излома характеристики при нулевом напряжении. Кроме того, в эквивалентной схеме реального диода следует учесть емкость между электродами, а для более высоких частот и паразитную индуктивность. В некоторых применениях существенна также инерционность диода в процессе переключения из прямого на обратное направление.

Свойства реального диода зависят не только от конструкции, но и от материала полупроводника. Лучшие свойства имеют диоды, у которых в качестве полупроводника применен кремний. При одной и той же конструкции кремниевые диоды отличаются меньшим обратным током, большим обратным напряжением, большей крутизной характеристики в прямом направлении и, что особенно существенно, большей допустимой температурой перехода (примерно до 170 °C), что позволяет работать при большей рассеиваемой мощности.

Что такое полупроводниковый стабилитрон?

Это плоскостной диод, в котором для стабилизации напряжения используется эффект Зенера. Обратный ток диода в относительно большом интервале изменений напряжения не зависит от этого напряжения. Однако при достаточно большом значении обратного напряжения ток диода начинает резко возрастать (рис. 3.10).



Рис. 3.10. Условное графическое обозначение полупроводникового стабилитрона (а) и его характеристика (б)


Напряжение, зависящее от свойств перехода (ширины, материала, концентрации примесей), составляет от нескольких до 1000 В и называется напряжением зенеровского пробоя или напряжением стабилизации. Если не будет превышена допустимая мощность рассеяния диода, пробой не разрушает диод.

Причиной резкого увеличения тока является чрезмерное увеличение напряженности электрического поля в запирающем слое, которое вызывает два эффекта: зенеровскую и лавинную ионизацию.

Для узких переходов, образующихся при сильном легировании, уже при напряжениях около нескольких вольт напряженность электрического поля становится настолько большой, что наступает зенеровская ионизация, основанная на переходе электронов из валентной зоны материала p-типа и переносе их через барьер в зону проводимости в материал n-типа[7]. Лавинная ионизация, имеющая место в широких переходах при малом легировании, вызывается бомбардировкой атомов кристаллической решетки ускоренными электронами, создающими обратный ток. Столкновение электронов с атомами вызывает лавинный процесс образования новых носителей заряда, быстро увеличивающих обратный ток.

Что такое туннельный диод?

Это полупроводниковый диод, в котором благодаря использованию высокой концентрации примесей возникает очень узкий барьер и наблюдается туннельный механизм переноса зарядов через р-n переход. Характеристика туннельного диода (рис. 3.11) имеет область отрицательного сопротивления 1, т. е. область, в которой положительному приращению напряжения соответствует отрицательное приращение тока. В таком диоде прохождение электронов через область барьера наблюдается при обратном смещении и даже при небольшом смещении в проводящем направлении, при котором имеет место максимум тока.



Рис. 3.11. Характеристика туннельного диода


Дальнейшее увеличение напряжения смещения вызывает такое уменьшение электрического ноля в барьере, что прохождение электронов через область барьера прекращается. Одновременно по мере роста напряжения возрастает «нормальный» ток диода, смещенного в прямом направлении. Название «туннельный» вытекает из более подробного рассмотрения сложных явлений в переходе, которое предполагает, что электроны, будучи не в состоянии пройти нормальным способом над потенциальным барьером, проходят под барьером, как бы через туннель.

Туннельный диод, называемый иногда диодом Есаки, используется в электронных устройствах в качестве элемента с отрицательным сопротивлением.

Что такое варакторный диод?

Это полупроводниковый диод с р-n переходом, изготовленный по специальной технологии, в котором имеет место нелинейная зависимость емкости запертого р-n перехода от приложенного к диоду обратного напряжения. Емкость диода зависит от ширины запирающего слоя, который в этом случае можно трактовать как диэлектрик конденсатора. Обкладками конденсатора служат прилегающие к запирающему слою области полупроводника. Если напряжение, смещающее диод в обратном направлении, возрастает, то емкость диода уменьшается. Для типичного диода в интервале отрицательных напряжений от нескольких десятков вольт до нуля емкость изменяется от 10 до 200 пФ (рис. 3.12).



Рис. 3.12. Условное графическое обозначение варакторного диода (а) и характеристика изменения емкости (б)


Варакторные диоды, называемые также емкостными диодами или варикапами, находят применение, в частности, как элементы, включаемые в резонансные контуры, которые можно при этом перестраивать, изменяя напряжение смещения на аноде (например, с помощью потенциометра). Такое решение часто используют в радиоприемниках, исключая, таким образом, неудобный и дорогостоящий конденсатор переменной емкости поворотного типа (рис. 3.13).



Рис. 3.13. Принцип перестройки резонансного контура с помощью варакторного диода


Регулируемое напряжение подводится к диоду через резистор R, сопротивление которого должно быть настолько большим, чтобы не шунтировать резонансный контур. Зависящее от этого напряжения изменение емкости диода вызывает изменение емкости, подключенной параллельно емкости резонансного контура. Тем самым изменяется результирующая емкость этого контура, а следовательно, и его резонансная частота.

Что такое р-i-n диод?

Это диод, содержащий слой собственного полупроводника между областями р- и n-типа. Положительное смещение полупроводника р по отношению к полупроводнику n-типа вызывает перемещение электронов из n-области и одновременно дырок из р-области в собственный полупроводник. Концентрация примесей в собственном полупроводнике увеличивается, и сопротивление этой области уменьшается. При противоположном смещении из-за высокого удельного сопротивления области собственного полупроводника и большой ширины перехода (запирающего слоя) сопротивление велико. При смещении в прямом направлении получают изменение сопротивления диода в интервале, например, от нескольких ом до нескольких килоом.

В частности, р-i-n диоды применяют в переключающих устройствах как элементы с высокой скоростью переключения, в схемах аттенюаторов, управляемых напряжением постоянного тока, и в технике сверхвысоких частот.

Что такое полупроводниковый фотодиод?

Это светочувствительный диод, обычно с одним р-n переходом, работающими при смещении в обратном направлении. Под влиянием излучения, например видимого света, наступает изменение сопротивления диода и, следовательно, изменение тока, протекающего во внешней цепи. Внешнее излучение вызывает увеличение количества основных и неосновных носителей заряда и уменьшение сопротивления, что эквивалентно увеличению обратного тока диода.

Существуют также вакуумные и газонаполненные фотоэлементы (фотодиоды). В типичном вакуумном фотоэлементе подвергаемый воздействию света катод покрыт слоем металла с фотоэмиссионными свойствами, например слоем натрия, калия, цезия. Выбор применяемого металла зависит от длины волны падающего света. Фотоэлементы применяются в фотоэкспонометрах.

Что такое электролюминесцентный диод?

Это диод, светящийся под влиянием подведенной извне электрической энергии. Интенсивность свечения зависит от подводимого тока, причем эта зависимость является линейной в большом диапазоне изменений тока. Существуют вакуумные, газонаполненные и полупроводниковые электролюминесцентные диоды. Все более широкое применение находят последние, работающие при малых напряжениях (около 2 В) и токах (от нескольких до 10–20 мА), что упрощает их работу в транзисторных схемах. При этом их отличает высокая надежность и исключительно большой срок службы. Существуют также многосегментные электролюминесцентные диоды, например из фосфида гелия, используемые в качестве цифровых индикаторов (от 0 до 9). Они нашли применение в миникалькуляторах и электронных часах.

Электролюминесцентные диоды известны также под названием светодиоды.

Как обозначаются полупроводниковые диоды?

В каталогах зарубежных фирм диоды обозначаются буквенно-цифровыми символами. Обозначения бывают различными и зависят от изготовителя и время изготовления. В настоящее время первая буква определяет тип полупроводника: А — германий, В — кремнии. Вторая буква характеризует вид элемента: А — обычный диод, Z — стабилитрон, E — туннельный диод, Р — фотодиод, В — варакторный диод, Y — выпрямительный диод. Третья буква обозначает элемент, предназначенный для специальных устройств. Цифровое обозначение характеризует некоторые параметры либо очередной тип в производстве.


Таблица 3.1

Полупроводниковые приборы… Обозначение

____________________________________

I. Диоды

1. Диоды выпрямительные:

• малой мощности (со средним значением прямого тока не более 0,3 А)… 1

• средней мощности (со средним значением прямого тока более 0,3 А, но не более 10 А)… 2

2. Диоды универсальные:

• (с рабочей частотой не более 1000 МГц.)… 4

3. Диоды импульсные:

• со временем восстановления обратного сопротивления более 150 нс… 5

• со временем восстановления обратного сопротивления более 30, но не более 150 нс… 6

• со временем восстановления обратного сопротивления более 5, но не более 30 нс… 7

• со временем восстановления обратного сопротивления не менее 1 и не более 5 нс… 8

• со временем восстановления обратного сопротивления менее 1 нс… 9

4. Выпрямительные столбы и блоки:

• столбы малой мощности (со средним значением прямого тока более 0,3 А)… 1

• столбы средней мощности (со средним значением прямого тока более 0,3, но не более 10 А)… 2

• блоки малой мощности (со средним значением прямого тока более 0,3 А)… 3

• блоки средней мощности (со средним значением прямого тока более 0,3, но не более 10 А)… 4

5. Диоды сверхвысокочастотные:

• смесительные… 1

• детекторные… 2

• параметрические… 4

• регулирующие (переключательные, ограничительные и модуляторные)… 5

• умножительные… 6

• генераторные… 7

6. Варикапы:

• подстроенные… 1

• умножительные (варакторные)… 2

7. Диоды туннельные и обращенные:

• усилительные… 1

• генераторные… 2

• переключательные… 3

• обращенные… 4

8. Диоды излучающие:

• инфракрасного диапазона… 1

видимого диапазона (светодиоды) с яркостью:

• не более 55 нт… 3

• более 500 нт… 4


II. Тиристоры

1. Диодные тиристоры:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 1

• средней мощности (с допустимым значением прямого тока более 0,3 А, но не более 10 А)… 2

2. Триодные тиристоры:

— незапираемые:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 1

• средней мощности (с допустимым значением прямого тока более 0,3, но не более 10 А)… 2

— запираемые:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 3

• средней мощности (с допустимым значением прямого тока не более 0,3 А)… 4

— симметричные незапираемые:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 5

• средней мощности (с допустимым значением прямого тока более 0,3, но не более 10 А)… 6


В СССР полупроводниковые диоды также имеют буквенно-цифровую маркировку. Первая буква в приборах широкого применения определяет тип исходного материала: Г — германий, К— кремний, А — соединения галлия.

Вторая буква определяет подкласс прибора: Д — диоды выпрямительные, универсальные, импульсные; Ц — выпрямительные столбцы и блоки; А — диоды сверхвысокочастотные; В — варикапы; И — диоды туннельные и обращенные; Л — диоды излучающие; Б — приборы с объемным эффектом (приборы Ганна); С — стабилитроны и стабисторы. Третий элемент маркировки (цифра) соответствует назначению прибора (табл. 3.1). Четвертый и пятый элементы маркировки прибора определяют порядковый номер разработки технологического типа прибора и обозначаются от 1 до 99.

Третий элемент маркировки и стабисторов (цифра) определяет индекс мощности, а четвертый и пятый — номинальное напряжение стабилизации (табл. 3.2). При напряжении стабилизации менее 10 В четвертый элемент означает целое число, а пятый — десятые доли напряжения стабилизации. При напряжении стабилизации от 10 до 99 В четвертый и пятый элементы обозначают номинальное напряжение стабилизации, а от 100 до 199 В разность номинального напряжения стабилизации и 100 В. Шестой элемент маркировки определяет последовательность разработки и обозначается буквами от А до Я, о для диодов определяет деление технологического типа на параметрические группы. Например, КД206В — кремниевый выпрямительный диод, предназначенный для устройств широкого применения, средней мощности с порядковым номером разработки G. Прим. ред.


Каковы принцип действия и свойства вакуумного диода?

В вакуумном диоде источником свободных электронов является катод, выполненный из металла (либо окислов металлов) и накаливаемый (косвенно или непосредственно) от внешнего источника напряжения накала (термоэмиссия), которым обычно является источник переменного тока. Свободно выходящие из катода электроны движутся в вакууме к другому электроду лампы, называемому анодом[8] и подключенному к положительному полюсу источника анодного напряжения (рис. 3.14, а). Через диод от анода к катоду течет анодный ток[9]. Вблизи катода возникает электронное облако, называемое пространственным зарядом, защищающее катод от бомбардировки ионами, возникающими в неидеальном вакууме лампы.

Анодный ток зависит от потенциала на аноде относительно катода. При нулевом и даже небольшом отрицательном анодном напряжении (рис. 3.14, б) существует небольшой ток за счет собственной скорости электронов, которые попадают на анод несмотря па отсутствие ускоряющего поля. В интервале небольших положительных напряжений анодный ток возрастает при одновременном уменьшении пространственного заряда. При дальнейшем росте анодного напряжения наступает все более сильное выхватывание электронов из облака пространственного заряда вплоть до полной ликвидации этого заряда. Дальнейшее увеличение анодного тока при этом ограничивается эмиссионными свойствами катода, и наступает режим насыщения тока. Вольт-амперная характеристика диода имеет нелинейный характер.

Вакуумные диоды обладают некоторой паразитной междуэлектродной емкостью (обычно больше 3 пФ) и относительно высоким сопротивлением в проводящем направлены.

Вакуумные диоды рассчитаны на максимальные обратные напряжения от нескольких вольт до нескольких десятков тысяч вольт при токах в прямом направлении, доходящих до нескольких ампер.

В большинстве случаев вакуумные диоды были заменены полупроводниковыми диодами, особенно в схемах детекторов и выпрямителей малой и средней мощности.



Рис. 3.14. Схема включения (а) и характеристики (б) вакуумного диода:

— начальный ток; 2 — область пространственного заряда; 3 — вольфрамовый катод; 4 — оксидный катод

Что такое газоразрядные диоды?

Это диоды, наполненные разреженным благородным газом или парами ртути, в которых носителями зарядов являются как электроны, так и положительные ионы. Существуют газоразрядные лампы с холодным катодом, называемые лампами тлеющего разряда, и газоразрядные лампы с накаливаемым катодом, называемые газотронами. В диодах с холодным катодом существенную роль играют свободные электроны и положительные ионы, находящиеся в газе, в частности, в результате воздействия световой энергии и внутренней тепловой энергии частиц, газа. При достаточно высоком анодном потенциале ускоренные свободные электроны вызывают ионизацию газа, а положительные ионы бомбардируют катод и благодаря своей большой массе, а также высокой кинетической энергии вызывают вторичную эмиссию с поверхности катода.

Газотроны чаще всего применяют в качестве выпрямительных диодов для больших токов (до 100 А), а также в схемах регулировки напряжения, тогда как лампы тлеющего разряда применяют для стабилизации напряжения, для чего используется плоская часть вольт-амперной характеристики, соответствующая области ионизации газа (рис. 3.15). Кроме того, газотроны применяют в качестве неоновых ламп, цвет свечения которых зависит от наполняющего лампу газа, например неон дает красное свечение, гелий — желтое, пары ртути с неоном и аргоном — голубое. Существуют также лампы тлеющего разряда, имеющие 10 катодов в виде цифр от 0 до 9, используемые в цифровых индикаторах счетных устройств.



Рис. 3.15. Характеристика диода с тлеющим разрядом

Где применяется диод?

Диод является элементом, очень часто используемым в электронных устройствах. В интегральных схемах применяют только диоды с р-n переходом. Диод в схемах играет роль вентиля. Параметры реального диода отличаются от параметров идеального. Наиболее нежелательные явления — обратный ток, существование некоторого сопротивления в прямом направлении, паразитная емкость, а также нелинейность отдельного участка вольт-амперной характеристики. При применениях диода в качестве переключателя в диапазоне высоких частот или в схемах с импульсами с крутыми фронтом и срезом решающее значение имеют динамические свойства.

Диоды используют главным образом в схемах ограничения, выпрямления, детектирования, а также в вентильных схемах в цифровой технике. В каждом из этих случаях берут диоды, удовлетворяющие определенным требованиям, если речь идет о динамических свойствах, внутреннем сопротивлении, емкости, токовой эффективности и электрической прочности.

Каковы динамические свойства полупроводникового диода?

Динамические свойства диода определяются при работе в режиме переключения, т. е. при переходе из состояния включения (прямое направление) в состояние выключения (обратное направление) либо наоборот. Идеальный диод практически не обладает инерционностью при переключении, тогда как реальный полупроводниковый диод характеризуется ограниченной скоростью переключения (рис. 3.16), являющейся следствием явлений, происходящих в запирающем слое. Эти явления исключают возможность очень быстрого изменения концентрации носителей.

Одной из причин такого состояния является наличие емкости перехода, называемой также переходной емкостью. Переход действует на принципе конденсатора, к которому следует подвести (либо удалить) заряд с целью формирования области барьера. Для этого всегда требуется некоторое время. Переходная емкость зависит от приложенного напряжения. Для быстродействующих плоскостных диодов она равна 0,5–2 пФ.

Другой причиной ограниченной скорости переключения является накопление заряда в диоде, пропорциональное току в прямом направлении. Действие заряда определяется с помощью диффузионной емкости. Влияние заряда наглядно видно при переключении из состояния проводимости в состояние запирания. Лучшими динамическими свойствами обладают точечные диоды, но одновременно они имеют достаточно высокое сопротивление в прямом направлении, в результате чего на них возникает определенное падение напряжения в проводящем состоянии. Наилучшими свойствами обладают диоды с плоским переходом металл — полупроводник, у которых благодаря малому накопленному заряду в переходе время переключения составляет менее 0,1 не при сопротивлении меньше 1 Ом.

Работу полупроводникового элемента в режиме переключения более детально рассмотрим на примере транзистора.



Рис. 3.16. Переходные процессы в диоде при переключении из состояния проводимости в состояние запирания (а) и наоборот (б):

1 — открытое; 2 — закрытое состояние

Как используется диод для ограничения сигнала?

В простой схеме ограничителя последовательного типа (рис. 3.17) диод проводит, когда на аноде присутствует положительное относительно катода напряжение (проводящее направление), — в течение положительного (верхнего) полупериода входного напряжения и не проводит, когда напряжение на аноде отрицательно (обратное направление), — в течение отрицательного полупериода входного напряжения.



Рис. 3.17. Простой последовательный ограничитель снизу


Выходное напряжение на нагрузочном резисторе состоит только из верхних полупериодов синусоиды. Если направление включения диода изменить на обратное, то на выходе появляются только нижние полупериоды входного напряжения. Уровень ограничения определяет «нулевая линия»[10]. Возможно также ограничение и на другом уровне. Изменение уровня ограничениядостигается путем добавления источника постоянного напряжения, смещающего диод в направлении проводимости либо в обратном направлении. В схеме на рис. 3.18 происходит частичное ограничение верхней половины синусоиды. Устройства, ограничивающие «верхние» половины синусоид, чаще всего называются односторонними ограничителями. Существуют также двусторонние ограничители.



Рис. 3.18. Последовательный ограничитель сверху со смещением

Как используется диод для выпрямления переменного напряжения?

Существует много схем выпрямителей на диодах. Диод может работать как выпрямитель, например в схеме, изображенной на рис. 3.17. Если выходное напряжение, состоящее из полупериодов входного переменного напряжения той же самой полярности, подать затем на сглаживающий фильтр, то на выходе фильтра получают сглаженное постоянное напряжение, т. е. напряжение, которое является средним значением колебания на выходе выпрямителя. Таким образом, диод участвует в процессе преобразования переменного напряжения в постоянное. Этот процесс называется выпрямлением.

Более подробно выпрямители рассматриваются в гл. 6.

Как используются диоды для детектирования сигналов?

К диоду, работающему в режиме детектирования (демодуляции), подводится сигнал высокой частоты, промодулированный по амплитуде, частота которого значительно ниже (рис. 3.19). Это может быть электрический сигнал, соответствующий звуковым сигналам. В этом случае задача диода заключается в ограничении одной половины модулированного сигнала, что позволяет затем с помощью фильтра выделить модулирующее напряжение, т. е. сигнал низкой частоты. Фильтр RС-типа не пропускает, а исключает высокочастотные составляющие и обеспечивает появление на выходе только составляющих модулирующего сигнала. В этом случае диод работает так же, как переключающая схема — вентиль. Вопросы детектирования более детально обсуждаются в гл. 11.






Рис. 3.19. Схема диодного детектора (а) и формы входного (б) и выходного напряжений без емкости (в) и с емкостью (г)

Что такое диодные вентили?

Это схемы с диодами, часто встречающиеся в цифровой технике. В них диоды используются как элементы, отпирающие либо запирающие путь для сигнала со входа на выход. Разработано много различных схем вентилей. Более подробно они будут рассмотрены в гл. 12.

Глава 4 ТРАНЗИСТОРЫ И ТРИОДЫ. ОСНОВНЫЕ СХЕМЫ

Что такое транзистор?

Это полупроводниковый прибор с тремя электродами, который обладает свойством усиления электрического сигнала. По принципу работы транзисторы делятся на биполярные и униполярные или полевые, а по технологии на плоскостные (с р-n переходом) и точечные. Биполярные плоскостные транзисторы с точки зрения технологии также подразделяются на дрейфовые, диффузионные, планарные, сплавные, меза и др. С точки зрения используемого полупроводникового материала транзисторы делятся на германиевые, кремниевые и арсенидо-галлиевые.

Транзистор является активным элементом, который в большинстве электронных схем полностью заменяет ранее используемые вакуумные приборы (электронные лампы). По сравнению с электронной лампой транзистор обладает следующими преимуществами: малые габариты, большой срок службы и большая надежность, высокая устойчивость к механическим ударам, низкое напряжение питания, отсутствие напряжения накала. Недостатки транзистора (по сравнению с лампами) — ограниченные мощность и рабочее напряжение, большая чувствительность к изменениям температуры и меньший диапазон рабочих температур, малая стойкость к коротким замыканиям и искрениям.

Что такое биполярный плоскостной транзистор?

Это транзистор, образуемый при соединении двух переходов, т. с. состоящий из трех областей; р-n-р или n-р-n. В таком транзисторе существует два вида носителей: основные и неосновные, отсюда название — биполярный. Электроды транзистора имеют следующие названия: эмиттер (Э), база (Б), коллектор (К), причем эмиттер и коллектор имеют одинаковый тип проводимости, а база, разделяющая эмиттер и коллектор, — противоположный. Транзисторы типа n-р-n и р-n-р, а также их графическое обозначение представлены на рис. 4.1.



Рис. 4.1. Структуры транзисторов

аn-р-nбр-n-р и их графические изображения

Как работает биполярный транзистор?

В типичных условиях работы транзистор подключен к источнику постоянного тока таким способом, что переход эмиттер — база (эмиттерный переход) смещен в проводящем направлении, а переход коллектор — база (коллекторный переход) в обратном направлении (рис. 4.2).



Рис. 4.2. Прохождение носителей зарядов в биполярном транзисторе


При таком смещении в случае р-n-р транзистора из области эмиттера в область базы переходят дырки, являющиеся основными носителями области эмиттера p-типа. Большинство дырок диффундирует через базу и достигает коллектора. Часть дырок исчезает в базе вследствие рекомбинации (повторного соединения) с основными носителями базы, т. е. электронами. В эмиттере также происходит рекомбинация дырок с электронами, проходящими из базы к эмиттеру. Электронный ток базы в общем значительно меньше дырочного тока эмиттера, поскольку база тонкая и легирована значительно меньше эмиттера. Ток коллектора создает дырки, приходящие от эмиттера, его значение (обычно несколько миллиампер) зависит непосредственно от напряжения смещения на переходе эмиттер — база (обычно около 0,2 В) и мало зависит от напряжения, смещающего в обратном направлении коллекторный переход (Uкэ около 10 В). От напряжения Uбэ зависит как ток эмиттера, так и ток базы (обычно несколько десятков микроампер), поэтому можно утверждать, что большой ток коллектора зависит от малого тока базы, т. е. малые изменения тока базы вызывают большие изменения тока коллектора.

Почему биполярный транзистор усиливает сигналы?

Рассмотрим это на примере, воспользовавшись упрощенной схемой усилителя на транзисторе (рис. 4.3, а). Переход база-эмиттер смещен в проводящем направлении, для этого между базой и эмиттером имеется напряжение смещения около 0,5–1,0 В. Переход коллектор — база смещен в обратном направлении, для этого между коллектором и базой существует напряжение смещения около 10–20 В (обычно 12 В). Между базой и эмиттером находится источник управляющего сигнала, например синусоидального, напряжением около нескольких десятков милливольт.

Напряжение между базой и эмиттером изменяется в соответствии с изменениями мгновенного управляющего напряжения и в каждый момент равно сумме постоянного напряжения от источника смещения и мгновенного значения управляющего напряжения (рис. 4.3, б). Для одного полупериода управляющего напряжений получен рост напряжения, смещающего базу в проводящем направлении, и увеличение тока базы, для другого — наоборот. Увеличение проводимости в переходе база — эмиттер вызывает рост тока через транзистор (от эмиттера до коллектора). Ток коллектора составляет обычно несколько миллиампер и при изменениях тока базы в интервале нескольких десятков микроампер изменяется на несколько миллиампер. Пои сопротивлении нагрузки в цепи коллектора, равном нескольким килоомам, диапазон мгновенных изменений падения напряжения на этой нагрузке составит несколько вольт.

В этом случае коэффициент усиления по напряжению, определенный как отношение изменения напряжения на сопротивлении нагрузки (несколько вольт) к изменению напряжения в цепи базы (несколько десятков вольт), составит несколько десятков.

Коэффициент усиления по току, определяемый отношением изменений (приращений) токов, т. е. несколько миллиампер для тока коллектора и несколько десятков микроампер для тока базы, составит примерно 100. Следовательно, коэффициент усиления по мощности, равный произведению коэффициента усиления по току на коэффициент усиления по напряжению, будет равен нескольким тысячам.



Рис. 4.3. Упрощенная схема транзисторного усилителя (а) и изменение мгновенного напряжения на его входе (б):

1 — наибольшая проводимость перехода (максимальные токи базы, эмиттера, коллектора); 2 — наименьшая проводимость перехода (минимальные токи базы, эмиттера, коллектора)

Как обозначаются токи и напряжения в транзисторных схемах?

В типичной транзисторной схеме одновременно имеются как постоянный, так и переменный ток. Часто приходится помимо постоянного тока определять и обозначать переменный (мгновенное, максимальное, действующее, среднее значение) либо их полные значения, являющиеся результатом суммирования постоянного и переменного токов (полное среднее, полное максимальное). Это осложняет вопрос обозначений и может приводить к недоразумениям. Поэтому во многих странах, в том числе и в ПНР, принята единая система обозначений.

Для обозначения токов и напряжений в транзисторных схемах используются буквы i, I, а также u, U с соответствующими индексами. В общем случае малые буквы относятся к мгновенным значениям, а большие используются для обозначения величин, определенных индексом, а также для обозначения постоянного тока.

Буквы в индексе определяют электрод транзистора (К, к — коллектор; Э, э — эмиттер; Б, б — база), а также среднее значение (СР, ср) — либо максимальное (m, max). Малые буквы в индексе относятся только к самой переменной составляющем, а большие — к постоянному току и к полным значениям.

Подробнее «расшифровка» системы буквенных обозначений для токов приведена на рис. 4.4. Для напряжений часто используется дополнительная буква в индексе, обозначающая электрод, относительно которого определяется напряжение, например uбэ, Uбк, Uкэ max и т. д.



Рис. 4.4. Обозначения токов в биполярных транзисторных схемах:

— мгновенное значение тока коллектора; IКр — ток коллектора в рабочей точке; IКmax — максимальное значение коллекторного тока; IКд — действующее значение; IКm — амплитудное значение тока; ΔIКр — приращение постоянной, составляющей при наличии переменного сигнала; t1 — время, в течение которого отсутствует переменный сигнал; t2 — на входе действует переменный сигнал

В каких схемах включения биполярный транзистор работает как усилитель?

Транзистор может работать как усилитель в трех основных схемах включения (рис. 4.5): схеме с общей базой (ОБ), с общим эмиттером (ОЭ) или общим коллектором (ОК). Каждая из этих схем обладает свойствами, с точки зрения усиления входного и выходного сопротивлений. Чаще всего используют схему ОЭ.





Рис. 4.5. Схемы включения транзистора:

а — схема с общей базой; б — схема с общим эмиттером; в — схема с общим коллектором

Что можно сказать о транзисторе как элементе схемы?

Транзистор является активным (нелинейным) элементом, параметры которого зависят от токов, напряжений (т. е. от рабочей точки и уровня сигнала), температуры и частоты. При работе с малыми сигналами транзистор приближенно можно считать линейным элементом.

Зависимость параметров транзистора от условий работы создает значительные трудности при проектировании и рассмотрении транзисторных схем. Часто возникает необходимость представления транзистора в виде упрощенной эквивалентной схемы (модели). Это трудная задача, так как эквивалентная схема транзистора зависит не только от условий работы, но и от технологии изготовления данного транзистора (материала и размеров).

Существует много приближенных эквивалентных схем, каждая из которых имеет ограниченный диапазон применений. Транзистор можно представить в виде соединения двух диодов: одного — смещенного в проводящем направлении (эмиттер — база), другого — в обратном (коллектор — база). Такие схемы называются физическими эквивалентными схемами или физическими моделями транзистора, так как они дают наглядное представление о физическом смысле отдельных элементов схемы. Эквивалентные схемы этого типа зависят также от схемы включения транзистора. Они различны для схем ОБ, ОЭ, ОК.

Что можно сказать о транзисторе как четырехполюснике?

Во многих случаях неудобно пользоваться физической эквивалентной схемой, поскольку она излишне сложна и содержит составляющие элементы, которые не всегда можно определить либо найти в справочнике для определенных условий работы транзистора. В этом случае часто пользуются представлением транзистора в виде «черного ящика» с двумя входными и двумя выходными зажимами (рис. 4.6), совершенно не вникая во внутреннюю структуру этого «ящика» и интересуясь лишь параметрами «ящика» в целом со стороны входных и выходных зажимов. Такой «черный ящик» называется активным четырехполюсником.



Рис. 4.6. Представление транзистора в виде четырехполюсника


При использовании эквивалентной схемы в виде четырехполюсника обычно транзистор рассматривается как линейный элемент. В принципе это допущение справедливо только при работе с малыми сигналами. Отсюда параметры транзистора называются малосигнальными. Транзистор как четырехполюсник можно описать с помощью только четырех параметров, значение которых зависит от рабочей точки и частоты. В общем значения этих параметров можно найти в справочниках либо измерить более простым способом, чем в случае измерения сопротивлений, входящих в состав физической модели транзистора.

Существует несколько типов четырехполюсников, отличающихся рассмотрением при различных условиях на входе и выходе, а именно в режимах короткого замыкания или холостого хода и принятии различных независимых переменных. Наибольшее практическое применение нашли четырехполюсники типа h и четырехполюсники типа у.

Что такое четырехполюсник типа h?

Это четырехполюсник, параметры которого определяются при условиях короткого замыкания на входе и холостого хода на выходе.

Эти условия наиболее приближенны к реальным условиям работы транзистора в наиболее часто встречаемых схемах с биполярными транзисторами. Ведь биполярный транзистор в типовой схеме имеет относительно малое входное сопротивление и относительно большое выходное.

Основные зависимости четырехполюсника типа h можно получить путем замены его равноценной схемой замещения. В общем случае эквивалентная схема может иметь вид, изображенный на рис. 4.7, а; это схема с двумя источниками напряжения, причем очевидно, что e2 определяющее выходное напряжение, зависит от u1. Затем можно выполнить преобразования, вводя вместо источника напряжение е2 источник тока i'2 (рис. 4.7, б). При коротком замыкании выходной цепи (u2 = 0) будет протекать ток, линейно зависящий (линейный четырехполюсник!) от тока i1; если обозначим коэффициент пропорциональности через h21, то получим i'2 = h21i1. При размыкании входной цепи (i1 = 0) имеем во входной цепи напряжение e1, линейно зависящее от напряжения u2. Обозначая коэффициент пропорциональности через h12, получаем к1 = h12u2. После введения дополнительных обозначений получим окончательную эквивалентную схему, представленную на рис. 4.7, в. На основании этого можем записать два уравнения четырехполюсника:

u1 = h11i1 + h12u2;

i2 = h21i1 + h22u2

в которых в качестве независимых переменных действуют входной ток i1 и выходное напряжение u2, т. е. смешанные, гибридные параметры или сокращенно h-параметры. Параметры четырехполюсника типа h достаточно легко определяются простыми методами измерений.

Выбор переменных i1 и u2 в качестве независимых переменных можно обосновать на примере усилителя рис. 4.3, а. Ток i1 соответствует току базы, и он действительно является независимой переменной, управляющей диодом эмиттер — база в проводящем направлении. Напряжение u1 = uб является зависимой переменной в основном от tб. Ток i2 (= iк) является регулируемым током, т. е. зависимым. Другой независимой переменной может быть только u2 (= uк); диод коллектор — база, смещенный в обратном направлении, должен управляться напряжением.





Рис. 4.7. Эквивалентная схема транзистора четырехполюсника:

а — с двумя источниками напряжения; б — с источником напряжения во входной цепи и источником тока в выходной цепи; в — с h-параметрами

Каков смысл величины и обозначения параметров тока h?

Как уже пояснялось выше, параметры типа h определяются для режима короткого замыкания (к. з.) на входе либо холостого хода (х. х.) на выходе. Смысл этих параметров и функций:

— входное сопротивление при к.з. на выходе,

т. е. входное сопротивление, измеренное при к.з. на выходе (u2 = 0); h11 отражает входное сопротивление и выражается в омах. Значение h11 для низкочастотного транзистора может составить, например, 5 кОм.

— коэффициент обратной связи по напряжению при х.х.,

т. е. коэффициент, измеренный при х. х. на входе (i1 = 0); h12 выражается безразмерным числом. Значение h12 для низкочастотного транзистора в схеме ОЭ может составлять, к примеру, 2·10-4.

 — коэффициент передачи тока при к.з., измеряемый при к. з. на выходе (u2 = 0); h21 представляется безразмерным числом. Значение h21 для низкочастотного транзистора в схеме ОЭ может составлять, например, 300.

 — входная проводимость при х.х., измеренная при х. х. на входе (i1 = 0); h22 имеет размерность проводимости и выражается в сименсах. Значение h22 для транзистора в схеме ОЭ может составлять, например, 30 Cм.

Используются также и другие обозначения параметров типа h и у: вместо индекса 11 — применяется индекс i (от английского Input — вход), вместо 22 — индекс о (output — выход), вместо 12 — индекс г (reverse — обратный), вместо 21 — индекс f (forward — прямой).

Параметры транзистора как четырехполюсника зависят от cxeмы, в которой работает транзистор. Для различения параметров в различных схемах включения применяются дополнительные индексы: Э — для схемы ОЭ; Б — для схемы ОБ; К — для схемы ОК.

Следовательно, получаем, например, hi (= h11), hf (= h21), h (= h21э).

Параметрами типа h особенно часто пользуются в случае низкочастотных схем. С помощью h-параметров можно выразить такие параметры усилительной схемы (рис. 4.8), например усилителя, как входное и выходное сопротивления, усиление по току, напряжению и мощности. Например, усиление по току выражается как

Ki = i2/i1 = h21/(1 + h22RII)


Рис. 4.8. Транзистор в виде четырехполюсника в схеме усилителя

Что такое y-параметры четырехполюсника?

Это параметры проводимостей транзистора, определяемые для режима к. з. на входе (u1 = 0) или на выходе (u2 = 0). Близкие условия обычно имеют место в транзисторных схемах, работающих в диапазоне высоких частот с малыми сопротивлениями, и поэтому y-параметры широко используют при проектировании высокочастотных схем. Эквивалентная схема четырехполюсника (транзистора) с y-параметрами представлена на рис. 4.9.



Рис. 4.9. Эквивалентная схема транзистора четырехполюсника с y-параметрами


Значения отдельных параметров следующие:

 — входная проводимость при к. з. на выходе цепи;

— проводимость обратной связи при к. з. на входе;

 — проводимость прямой передачи при к. з. на выходе цепи;

— выходная проводимость при к.з. на входе (u1 = 0).

В общем случае y-параметры в системе проводимостей состоят из действительной части активной проводимости g и мнимой части — реактивной проводимости Ь.

Между h- и y-параметрами существуют соотношения, допускающие их пересчеты, например h11 = 1/y11, h12C = y12/у11 и т. д.

Что такое схема с общей базой и каковы ее свойства?

В схеме ОБ сигнал подводится между эмиттером и базой, а нагрузка включается между коллектором и базой (рис. 4.10, а).

Существует ряд физических моделей схемы ОБ. Наиболее часто встречается схема, представленная на рис. 4.10, б, называемая Т-образной моделью или Т-образной эквивалентной схемой. В этой схеме слой базы транзистора изображается сопротивлением базовой области rб, значение которого убывает с ростом тока базы. Параллельно сопротивлению коллекторного перехода rк включена барьерная емкость Ск, сильно зависящая от напряжения Uкб и тока Iк.

Частотная зависимость элементов, образующих рассматриваемую физическую модель, в большом диапазоне частот невелика. Большое практическое значение при работе в диапазоне высоких частот имеет произведение rбСк. Его значение должно быть как можно меньше. Также имеет большое значение и произведение диффузионной емкости Сэ на сопротивление эмиттерного перехода rэ, определяющее предельную частоту f0h11 схемы ОБ, при которой h21б уменьшаете на 3 дБ, т. е. до относительного уровня 0,707, rэСэ ~= 1/2πfh11.

Схему ОБ можно представить также в виде четырехполюсника с h-или y-параметрами, заменяя в схеме, показанной на рис. 4.7, в ток i1 на iэ, i2 на iк, u1 на uэб, u2 на uкб. В этом случае получаем схему, показанную на рис. 4.10, в.





Рис. 4.10. Транзистор в усилительной схеме ОБ (a), физическая модель транзистора, работающего в схеме ОБ (б), схема с ОБ в виде четырехполюсника с h-параметрами (в)


Между h-параметрами и параметрами транзистора, соответствующими Т-образной эквивалентной схеме, существует определенная связь:

h11б ~= rэ, h21б = — К, h12б/h22б = rб, h22б = 1/rк

С помощью h-параметров можно определить параметры схемы, работающей в качестве усилителя, возбуждаемого от источника с внутренним сопротивлением Rг и нагруженного сопротивлением (рис. 4.10, а).

При расчете коэффициента усиления по напряжению КU можно воспользоваться формулой

K= uкб/uвх = Rк/(h11б + Rг) или K= uкб/uэб = Rк/h

Коэффициент усиления по току схемы ОБ К = h21Б ~ 1.

Выходное и входное сопротивления схемы определяются соответственно как

Rвых ~= 1/h22б; Rвх ~= h11б

Основные свойства схемы ОБ кратко можно свести к следующим: большое усиление по напряжению (не менее 1000), коэффициент усиления по току меньше единицы, большее усиление по мощности (примерно 1000), малое входное сопротивление (около 200 Ом), высокое выходное сопротивление (около 500 кОм).

Что называют статическими характеристиками транзистора?

Статические характеристики транзистора — зависимости между токами и напряжениями на различных электродах транзистора, которые получают при подаче на соответствующие электроды регулируемых постоянных напряжений. Статические характеристики снимают путем измерении в простой измерительной схеме либо находят в каталогах или справочниках, разработанных заводом-изготовителем. Статические характеристики позволяют определить ряд параметров транзистора и выбрать соответствующие условия работы, например при усилении сигналов переменного и постоянного тока.

Каковы статические характеристики транзистора в схеме ОБ?

Типичные статические характеристики транзистора в схеме ОБ представляют собой зависимость тока коллектора от постоянного напряжения между коллектором и базой, они называются выходными или коллекторными характеристиками. Такие характеристики можно определить для двух разных случаев: поддерживая постоянным ток эмиттера (рис. 4.11) или поддерживая постоянное значение напряжения эмиттер — база. В обоих случаях уже при малых напряжениях uкб ток коллектора Iк достигает значения, которое незначительно возрастает при дальнейшем увеличении коллекторного напряжения, причем это возрастание связано в основном с ростом составляющей обратного тока Iкбо (Iко), который существует из-за наличия неосновных носителей в полупроводнике и определяется для Iэ = 0. Основная составляющая тока коллектора, связанная с основными носителями, не зависит от напряжения Uкб смещающего коллекторный переход в запирающем направлении.

Нулевое значение коллекторного тока Iк достигается при небольшом напряжении Uкб противоположной полярности, т. е. при смещении коллекторного перехода в проводящем направлении.

Если при снятии характеристики Iк = φ·(Uкб) в измерительной схеме поддерживается постоянным ток Iэ, то ток Iэ является в этом случае параметром. Для транзистора типа n-р-n напряжение Uкб и ток коллектора положительны, а для транзистора типа р-n-р — отрицательны[11].

По приведенной на рис. 4.11 характеристике можно простым способом определить коэффициент передачи тока h21Б как отношение приращения тока коллектора ΔIк к приращению тока эмиттера ΔIэ при постоянном напряжении коллектор-база (Uкб = const). Для ΔUкб = 0



Из этих характеристик можно также определить параметр h22б или выходную проводимость схемы ОБ, а именно:



Рис. 4. 11. Статические выходные характеристики транзистора в схеме ОБ

Что такое схема с общим эмиттером и каковы ее свойства?

Схема ОЭ наиболее часто используется на практике, особенно при работе транзистора в качестве усилителя. В этой схеме входной сигнал подводится между базой и эмиттером, а нагрузка включается между коллектором и эмиттером (рис. 4.12, а). Наиболее часто используемой физической моделью или эквивалентной схемой для транзистора ОЭ является П-образная гибридная схема, представленная на рис. 4.12, б, которая отражает малосигнальные свойства транзистора в достаточно широком интервале изменений условий работы и частоты. Некоторые из элементов этой модели такие же как и для схемы ОБ. Проводимость gб'к совместно с емкостью Сб'к определяет обратную связь с выхода на вход схемы. Проводимость gкэ определяет выходное сопротивление схемы. Параметр S называется внутренней крутизной транзистора или взаимной проводимостью и выражается зависимостью

S = Δiк/Δuбэ

Внутренняя крутизна S обычно равна нескольким десяткам миллиампер на вольт.

Предельная частота fгр схемы ОЭ определяет ту частоту, на которой коэффициент h21э уменьшается на 3 дБ

fгр = fh11·(1 — h21б) = fh11/(1 + h21э)

Схема ОЭ в виде четырехполюсника с h-параметрами представлена на рис. 4.12, в. Если известны h-параметры для схемы ОБ, то можно путем пересчета получить h-параметры для схемы ОЭ:

h11э ~= h21э·h11б; h21э = h21б/(1 — h21б); h22э = h21э·h22б





Рис. 4.12. Транзистор в усилительной схеме ОЭ (а), физическая модель транзистора, работающего в схеме ОЭ (б) и схема ОЭ в виде четырехполюсника с h-параметрами (в)


Для определения параметров схемы ОЭ, используемой в качестве усилителя, возбуждаемого от источника сопротивлением Rг и нагруженного сопротивлением Rк (рис. 4.12, а), воспользуемся следующими соотношениями:

uбэ = h11б·iэ = (1 + h21эh11б·iб;

uкэ = iк·Rк

Тогда усиление по напряжению

Кuкэ/uбэ = h21э·Rк/h11э ~= Rк/h11б

а усиление по току, как уже было известно, равно Кh21э

Входное сопротивление

rвх ~= (1 + h21эh11б ~= h11э

включено параллельно Rб.

Основные свойства схемы ОЭ в сравнении со схемами ОБ и ОК можно свести к следующим: большое усиление по напряжению (возможно не менее 1000), большое усиление по току (возможно не менее 30), очень большое усиление по мощности (возможно не менее 30 000), среднее входное сопротивление (около 2 кОм), среднее или большое выходное сопротивление (примерно 100 кОм).

Какие статические характеристики транзистора в схеме ОЭ?

Типичными статическими характеристиками транзистора в схеме ОЭ являются: выходная характеристика рис. 4.13, а — зависимость тока коллектора Iк от напряжения при постоянном напряжении Uбэ или токе Iб[12] и входная характеристика (рис. 4.13, б) — зависимость тока базы Iб от напряжения Uбэ при постоянном напряжении Uкэ, выбранном в качестве параметра.



Рис. 4.13. Статические характеристики транзистора в схеме ОЭ:

а — выходные; б — входные


Как видно из выходных характеристик, ток коллектора начинает появляться уже при очень небольших значениях напряжения Uкэ, смещающего коллекторный переход в запирающем направлении, и быстро достигает значения, выше которого возрастает уже незначительно. При токе базы, равном нулю, в цепи коллектора протекает обратный ток коллектора

Iкэо = Iкбо/(1 — h21б)

Из выходной характеристики можно легко определить коэффициент передачи по току в схеме ОЭ h21э как отношение приращения тока коллектора ΔIк к приращению тока базы ΔIб при постоянном напряжении коллектор — эмиттер (Uкэ = const), т. е. для ΔUкэ = 0. Получим



Из характеристики транзистора, работающего в схеме ОЭ, можно также определить h11э и h22э:


Что такое схемы с общим коллектором и каковы ее свойства?

Транзисторную схему с общим коллектором (ОК) часто называют эмиттерным повторителем. Входной сигнал подводится между базой и коллектором, а нагрузка включается между эмиттером и коллектором (рис. 4.14, а). Физическая модель (эквивалентная схема ОК) представлена на рис. 4.14, б. Для эмиттерного повторителя справедливы следующие соотношения:

h11к = h11э; h12к ~= 1; h21к = — h21э; h22к ~= h22э ~= h21э·h22б;




Рис. 4.14. Транзистор в усилительной схеме ОК (а) и физическая модель транзистора, работающего в схеме ОК (б)


Основные свойства схемы ОК по сравнению со схемами ОБ и ОЭ сводятся к следующему: большое усиление по току (возможно примерно 30), усиление по напряжению меньше единицы, малое усиление по мощности (примерно 30), очень большое входное сопротивление (возможно 2 МОм), очень малое выходное сопротивление (не более 200 Ом).

Какая разница в свойствах схем ОБ, ОЭ, ОК?

Схемы ОБ, ОЭ, ОК отличаются входным и выходным сопротивлениями, усилением по напряжению, току и мощности. Численное значение каждого из этих параметров зависит от типа транзистора и условий его работы. Наибольшее усиление по мощности в каждой из схем достигается при согласовании транзистора, с одной стороны, с источником сигнала и, с другой стороны, — с нагрузкой.

Наибольшее входное сопротивление достигается в схеме с ОК, наименьшее в схеме ОБ. Что касается выходного сопротивления, то ситуация обратная: наибольшее сопротивление можно получить в схеме ОБ, наименьшее — в схеме ОК. Коэффициент усиления по напряжению в схемах ОБ и ОЭ почти одинаков (возможно 1000), а в схеме ОК он меньше единицы. Наибольшее усиление по мощности достигается в схеме ОЭ (можно получить несколько десятков тысяч), наименьшее — в схеме ОК (несколько десятков). Наибольшую рабочую частоту для данного транзистора можно получить в схеме ОБ. Она определяется частотой fh11 и в h21э раз больше предельной частоты fгр схемы ОЭ.

Существенной особенностью схемы ОЭ является переворачивание фазы сигнала. Это основано на том факте, что в случае нагрузки схемы резистором фаза выходного сигнала перевернута на 180 относительно фазы входного. В схемах ОБ и ОК переворачивание фазы сигнала отсутствует.

Что такое рабочая или нагрузочная характеристика транзистора?

Это уравнение прямой, выражающее зависимость тока коллектора от напряжения на нем при определенных значениях напряжения источника питания и сопротивления нагрузки. По характеристике можно определить мгновенные значения напряжений и токов при возбуждении входной цепи управляющим сигналом.

При построении рабочей характеристики используются статистические характеристики транзистора, которые, как известно, снимаются в измерительной схеме без сопротивления нагрузки и без управляющего входного колебания.

Наличие сопротивления нагрузки приводит к возникновению падения напряжения на этом сопротивлении за счет постоянной составляющей выходного тока, а подключение источника управляющего напряжения вызывает как изменение протекающего через транзистор тока, так и дополнительное падение напряжения на сопротивлении нагрузки. Связь между токами и напряжениями в этом случае определяется именно рабочей характеристикой.

При определении рабочей (нагрузочной) характеристики при усилении переменных колебаний следует учитывать фактическое сопротивление нагрузки, которое для переменного тока может иметь другое значение, чем для постоянного тока.

Что можно сказать о рабочей характеристике схемы ОБ?

Усилитель, работающий в схеме ОБ, представлен на рис. 4.10, а, а выходные характеристики Iкf(Uкб) для Iэ = const — на рис. 4.15.

Для выходной цепи можно записать следующее уравнение:

IкRк + Uкб = Ек

которое говорит о том, что сумма падений напряжения на сопротивлении Rк и на переходе коллектор — база должна быть численно равна напряжению источника питания. Для Rк = 2 кОм и Ек = 12 В на основании этого уравнения получим два крайних значения: Uкб = 0, если Iк = 6 мА, и Uкб = 12 В, если Iк = 0.

На семействе характеристик Iкf(Uкб) обозначим через Р1 и Р2 точки, соответствующие этим значениям, а затем проведем через них прямую, называемую нагрузочной прямой.

В рассматриваемом примере нагрузочная прямая одинакова для переменного и постоянного тока, поскольку в представленной на рис. 4.10, а схеме сопротивление нагрузки (резистивное) не зависит от частоты. Точка Р0, лежащая на этой прямой и соответствующая значениям Iк и Uкб в схеме при отсутствии сигнала на входе, называется рабочей точкой в состоянии покоя Р0. При заданных значениях Rк и Ек рабочая точка зависит от значений Rэ и Еэ, определяющих напряжение смещения перехода эмиттер — база, а следовательно, и ток Iэ. В режиме линейного усиления рабочую точку выбирают таким образом, чтобы она лежала вблизи середины нагрузочной прямой, проходящей через точки Р1 и Р2.

На семействе характеристик Iкf(Uкб) можно нанести управляющее колебание. Если изменения мгновенного значения тока эмиттера, вызванные этим колебанием, будут находиться, в пределах от iэ мах до iэ min, то, двигаясь вдоль этой прямой, можем определить диапазон изменений тока и напряжения между коллектором и базой.

Когда сопротивление нагрузки для переменного тока имеет другое значение, чем для постоянного, на семействе характеристик строим две нагрузочные прямые: одну для постоянной составляющей, другую для переменной. Обе прямые всегда пересекаются в рабочей точке.



Рис. 4.15. Нагрузочная характеристика в семействе статических выходных характеристик схемы ОБ

Что можно сказать о рабочей характеристике схемы ОЭ?

Схема усилителя, работающего по схеме ОЭ, представлена на рис. 4.12, а, а примерные выходные характеристики Iкf(Uкэ) для Iб = const на рис. 4.16, а. При построении рабочей характеристики принято Ек = 12 В, Rк = 2 кОм, а также использовано уравнение

IкRк + Uкэ = Ек

Затем построена нагрузочная прямая. Рабочая точка покоя Р0 выбрана для Iб = 80 мкА. Для точек Р1 и Р2 в этом случае имеем:

Iб(Р1) = 120 мкА; Iк(Р1) = 5 мА;

Iб(Р2) = 40 мкА; Iк(Р2) = 1,3 мА.

Используя нагрузочную прямую, можно вычислить некоторые параметры рассматриваемой схемы. Например, коэффициент усиления по току


Можно также рассчитать значение коэффициента передачи по напряжению. Для этого следует воспользоваться входной статической характеристикой Iбφ(Uбэ) для Uкэ = const (рис. 4, 16, б, с учетом того, что для Uкэ выбираем значение, соответствующее рабочей точке Р0 на характеристике Iкf(Uкэ) (рис. 4.16, а). Затем выбираем такое значение Eб или для заданного Еб такое сопротивление Rб, чтобы нагрузочная прямая пересекла эту характеристику в точке, соответствующей току базы для рабочей точки Р0 (рис. 4.16, а). Вдоль оси напряжения Uбэ определим Uбэ управляющего напряжения для токов базы от Iб(Р1) до Iб(Р2). Из рис. 4.16, а получим Uкб = 30 мВ, а из рис. 4.16, Uкб = ΔIкRк = 6 В, т. е. коэффициент усиления по напряжению для этого примера равен

K = Uкб/Uбэ = 6 В/30 мВ = 200.



Рис. 4.16. Нагрузочная характеристика в семействе выходных (а) характеристик схемы ОЭ и определение управляющего напряжения в схеме ОЭ (б)

Что такое полевой транзистор?

Это транзистор, управляемый электрическим полем, в котором действует лишь одни вид тока, а именно созданный только основными носителями: электронами или дырками[13]. В биполярном транзисторе, как известно, действуют оба вида носителей — основные и неосновные, т. е. электроны и дырки. Полевые транзисторы называются также транзисторами на полевом эффекте, что следует из принципа их работы. Встречается также название — транзисторы FET, являющееся сокращением английского названия Field Effect Transistor. Полевые транзисторы делятся на две группы: транзисторы с р-n переходом и транзисторы с изолированным затвором — МДП или МОП транзисторы.

Каковы структура и принцип работы полевого транзистора?

Структура полевого транзистора упрощенно представлена на рис. 4.17.



Рис. 4.17. Структура полевого МОП транзистора:

— металлический контакт истока; 2 — металлический контакт стока; 3 — подложка с собственной проводимостью или р-типа; 4 — изолирующий слой окисла; 5 — канал с зарядом электронов


На подложке из собственного или слабо легированного акцепторами полупроводника (p-типа) расположены полученные путем диффузии две области с высокой концентрацией электронов (n-типа), называемые истоком и стоком и соединенные с металлическими контактами. В центральной части над подложкой находится изолирующий слой окисла, а над ним — металлический слой треть его электрода, называемогозатвором. В полупроводнике между истоком и стоком под затвором во время работы транзистора возникает канал, проводящий ток.

Действие подобного полупроводникового прибора заключается в следующем. При отсутствии напряжения на затворе подводимое между стоком и истоком напряжение создает пренебрежимо малое значение протекающего тока благодаря большому сопротивлению канала. При подведении к затвору положительного относительно истока и большего, чем напряжение сток-исток, напряжения в диэлектрике подложки возникает электрическое поле, вытягивающее электроны из участков металлизации истока и стока и направляющее их в канал в сторону стока. Электроны свободно движутся вдоль канала от истока к стоку, образуя ток стока, зависящий от напряженности электрического поля. Это и есть полевой эффект.

Рассматриваемый транзистор типа МОП имеет несколько эквивалентных названий, связанных со структурой и принципом работы, которые встречаются в литературе и каталогах: полевой транзистор, работающий на принципе обогащения носителей в канале, или транзистор с индуцированным или встроенным каналом, или транзистор типа «нормально выключенный».

Название «нормально выключенный» следует из того факта, что ток стока равен нулю при разомкнутом затворе (Uзи = 0) и возрастает при положительных напряжениях на затворе.

Существуют транзисторы типа МОП с несколько отличной структурой и другими эффектами, сопутствующими возникновению тока стока, называемые полевыми транзисторами с изолированным затвором, работающие на принципе обеднения носителей в канале, или транзисторы типа «нормально включенный». В зарубежной литературе они помимо обозначения MOS часто имеют обозначение MOST или IGFET. Название, связанное с обеднением, следует из того факта, что проводимость канала, не равная нулю для Uзи = 0, может быть уменьшена («обеднена»), когда (Uзи будет отрицательным. Положительные значения напряжения затвора увеличивают проводимость канала и ток стока.

Графически изображения обоих типов транзисторов представлены на рис. 4.18.



Рис. 4.18. Условные графические изображения полевых МОП транзисторов с изолированным затвором, обогащенного типа с р-каналом с подложкой, выведенной наружу, (а) и подложкой, не выведенной наружу, (б), с n-каналом (а) и обедненного типа с р-каналом (г)

Что такое статическая характеристика МОП транзистора?

Статическая характеристика МОП транзистора представляет собой зависимость тока стока Iс от напряжения сток — исток Uси при постоянном напряжении затвор — исток Uзи. Это выходная, или стоковая, характеристика. На рис. 4.19, а представлена такая характеристика для транзистора «нормально выключенного» типа.




Рис. 4.19. Статические выходные характеристики (стоковые) МОП транзистора типа:

а — «нормально выключенный»; б — «нормально включенный»


Ток стока тем больше, чем больше напряжение между истоком и стоком, поскольку при этом увеличивается заряд свободных электронов в канале подложки. Зависимость тока стока от напряжения исток — сток Uси линейна до тех пор, пока напряжение Uси достаточно мало. Если оно сравнимо с напряжением затвор — исток и положительно, то вдоль канала наблюдается изменение электрического поля. Оно максимально вблизи истока и минимально вблизи стока. Зависимость тока стока от напряжения сток — исток становится нелинейной. При больших напряжениях Uси (Uси > Uзи) наступает насыщение тока стока. При дальнейшем росте Uси резко увеличивается ток (лавинный эффект). Это область пробоя.

Стоковая характеристика МОП-транзистора простирается также в область отрицательных напряжений между стоком и истоком, так как изменение полярности напряжения не вызывает существенных изменений в работе транзистора. Происходит это благодаря тому, что в МОП транзисторе в отличие от биполярного транзистора отсутствуют однонаправленные р-n переходы. Насыщения тока в области отрицательных Uси не наблюдается, поскольку в этом случае нет перехода через точку Uси = Uзи.

Характеристика МОП транзистора типа «нормально включенного» показана на рис. 4.19, б.

Статическая характеристика, представляющая зависимость тока стока от напряжения Uзи при напряжении Uси, взятом в качестве параметра, называется входной характеристикой (стоко-затворной характеристикой или характеристикой управления — прим. перев.). Примеры таких характеристик для транзисторов обоих типов представлены на рис. 4.20, а и б.




Рис. 4.20. Статические передаточные характеристики МОП транзистора типа:

а — «нормально выключенный»; б — «нормально включенный»

Каковы структура и принцип действия полевого транзистора с р-n переходом?

Упрощенная конструкция униполярного транзистора с управляющим переходом показана на рис. 4.21. Канал n-типа охватывается кольцевой областью затвора p-типа, в результате чего между затвором и каналом образуется р-n переход. По обеим противоположным сторонам канала расположены металлические электроды истока и стока.



Рис. 4.21. Физическая структура полевого транзистора с р-n переходом (а) и его условное графическое изображение (б):

1 — исток (И); 2 — затвор p-типа (3); 3 — сток (С); 4 — канал n-типа


Обычно транзистор работает с переходами, смещенными в обратном направлении. Это означает, что для конструкции, представленной на рисунке, напряжение Uз должно быть отрицательным относительно напряжений Uи и Uс. Основные носители зарядов обычно протекают от истока к стоку, поэтому напряжение Uс должно быть больше напряжения Uи. Например, Uзи = —1 В, Uси = +10 В. В канале под затвором возникает запирающий слой (рис. 4.22) р-n перехода, уменьшающий ширину канала, т. е. увеличивающий его сопротивление. Протекающий через канал ток стока зависит от площади поперечного сечения канала, не занятой запирающим слоем. Обычно затвор смещен в обратном направлении и запирающий слой расширяется (т. е. уменьшается ширина канала), если затвор становится более отрицательным. Ток стока убывает и в конце концов при напряжении затвора, когда запирающий слой захватывает весь канал, протекание тока от истока к стоку прекращается. Такое напряжение затвора называют напряжением отсечки и обозначают через Uотс (например, Uотс = —3 В).



Рис. 4.22. Запирающий слой в канале полевого транзистора с p-n переходом:

1 — канал; 2 — запирающие слои пространственного заряда

Что такое статическая характеристика полевого транзистора с р-n переходом?

Выходная стоковая характеристика полевого транзистора с переходом представляет собой зависимость тока стока Iс от напряжения сток — исток Uси при выбранном в качестве параметра Uотс (рис. 4.23, а). Из рис. видно, что при постоянном напряжении Uзи ток стока с увеличением напряжения Uси возрастает сначала линейно, транзистор ведет себя как сопротивление. При дальнейшем росте напряжения Uси ток Iс возрастает нелинейно и достигает точки перегиба («колено»), причем напряжение U, при котором наблюдается перегиб, равно разности напряжений Uзи Uотс (или иначе говоря, разности модулей значений Uотс  и Uзи). Дальнейшее увеличение напряжёния Uси вызывает изменение распределения потенциала в канале и появление сильного поля в области стока, поддерживающие постоянство тока Iс независимо от дальнейшего роста напряжения Uси. Область характеристики для напряжений превышающих напряжения, соответствующие точкам перегиба, называются областью насыщения или отсечки. Наибольший ток стока достигается при Uзи = 0, т. е. при коротком замыкании между затвором и истоком. Этот ток обозначается Iс нас. Стоковые характеристики полевых транзисторов с р-n переходом, так же как МОП-транзисторов, смещаются в область отрицательных напряжений Uзи, однако работа транзисторов этого типа при таких условиях невозможна из-за большого тока затвора.

Входная характеристика (сток-затворная характеристика — прим. перев.) полевого транзистора с управляющим р-n переходом представляет собой зависимость тока стока от напряжения затвор-исток (рис. 4.23, б). Напряжение Uзи, при котором прекращается ток стока, определяет напряжение отсечки Uотс.



Рис. 4.23. Статические выходные (а) и передаточная (б) характеристики полевого транзистора с р-n переходом

Каковы свойства полевых транзисторов?

Важный параметр униполярных транзисторов — большое входное сопротивление. Оно является следствием протекания очень малого тока затвора, который для полевых транзисторов с р-n переходом равен от 1 до 10 мА, а для МОП транзисторов — в 1000 раз меньше.

Большое входное сопротивление допускает управление полевым транзистором по напряжению от генератора (источника), практически такой транзистор не нагружает источник, не отбирает от него мощность.

Выходное сопротивление (внутреннее сопротивление — прим. перев.) полевых транзисторов (определяется в режиме насыщения) также велико и может быть равно нескольким сотням килоом



Важным параметром полевого транзистора является крутизна или иначе проводимость прямой передачи, которая определяется как



ее значение может изменяться от нескольких миллисименсов до 1 См. Обычно крутизна полевых транзисторов меньше крутизны биполярных. Усилительные свойства полевых транзисторов обусловлены относительно небольшим напряжением, подведенным между затвором и истоком и вызывающим большое изменение тока стока, а следовательно, и большое изменение падения напряжения на сопротивлении нагрузки.

В каких схемах работает полевой транзистор и какова его эквивалентная схема?

Полевой транзистор, так же как и биполярный, может работать в следующих усилительных схемах, упрощенно показанных на рис. 4.24; схема с общим истоком (ОИ) — аналог схемы ОЭ; схема с общим затвором (ОЗ) — аналог схемы ОБ, схема с общим стоком (ОС) — аналог схемы ОК.





Рис. 4.24. Схемы включения полевого транзистора:

а — с общим истоком; б — с общим затвором; в — с общим стоком


Для каждой из этих схем можно определить соответствующую эквивалентную схему. На рис. 4.25 показана упрощенная физическая модель полевого транзистора, работающего в схеме с ОИ с нагрузкой в цепи стока — резистором сопротивлением Rн. Емкость Сзи лежит обычно в пределах 3—10 пФ, а емкость Сзс еще меньше.



Рис. 4.25. Физическая модель полевого транзистора, работающего в схеме с ОИ и нагрузкой Rн


Входная емкость транзистора в схеме с ОИ выражается зависимостью

Свх = Сзи = k·Сзс

причем коэффициент k зависит от S и Rн и он тем больше, чем больше S и Rн. Емкость эквивалентной схемы достаточно просто можно измерить либо найти в справочниках, однако в них чаще даются «четырехполюсниковые» параметры транзистора. При этом следует помнить, что имеются следующие соотношения:

Сзс = С12; Сзс Сзи = С11

Параметр S можем определить из характеристик. Коэффициент усиления по напряжению в схеме с ОИ рассчитывается по формуле

KU = ΔUвых/ΔUвх = — S·Rн

Знак минус обозначает переворачивание фазы на 180° в схеме с ОИ.

Чем отличаются свойства биполярных и полевых транзисторов?

Полевые транзисторы по сравнению с биполярными имеют следующие преимущества: большое входное сопротивление, малую зависимость параметров от температуры, возможность работы в диапазоне как положительных, так и отрицательных сигналов (это не относится к полевым транзисторам с р-n переходом, которые при смещении затвора в проводящем направлении дают большой ток затвора).

Полевые транзисторы по сравнению с биполярными обладают следующими недостатками: малая мощность, малое значение S; большая входная емкость, в результате чего, несмотря на большое входное сопротивление, полное входное сопротивление быстро убывает с ростом частоты. Например, Rк = 15 кОм, Свх = 40 пФ, и тогда на частоте f = 100 кГц получим Zвх = 1/10ω·Свх= 40 кОм.

Что можно сказать о рабочей характеристике схемы с ОИ?

Усилитель, работающий по схеме с ОИ, представлен на рис. 4.26, а, а выходные стоковые характеристики Ic = f(Uси) для Uзи = const — на рис. 4.26, б. Можем записать следующее уравнение:

Uси = EcUcRн

причем для плоских участков характеристики Ic = f(Uси) в случае полевых транзисторов с р-n переходом и МОП-транзисторов «нормально включенных» существует зависимость

Ic = Ic нас·(1 — Uзи/Uотс)2

в которой Ic нас определяет ток насыщения стока при Uзи = 0. Для МОП транзисторов «нормально включенного» типа не существует Iси кз, поскольку ток «отсечен», если напряжение затвора меньше небольшого порогового значения Uпор (ток Ic выражается другой зависимостью).

Рабочую характеристику получают нанесением на семействе статических стоковых характеристик соответствующих нагрузочных прямых (рис. 4.26, б). Две точки Р1 и Р2 через которые проходит нагрузочная прямая для постоянного тока, определяется следующим образом:

Ic(P1) = Ec/Rн; Uси(P1) = 0

Ic(P2) = 0; Uси(P2) = Ec

При выборе рабочей точки следует учитывать, что зависимость, определяющая ток Ic, является квадратичной. Это означает возможность возникновения нелинейных искажений в результате появления, в частности, второй гармоники усиливаемого сигнала. В связи с этим рабочую точку следует выбирать таким образом, чтобы нагрузочная прямая для переменного тока полностью находилась в области плоских участков стоковых характеристик. В упрощенной схеме усилителя, представленной на рис. 4.26, а, обе нагрузочные прямые для постоянного и переменного тока налагаются друг на друга, поскольку в цепи, через которую протекает ток стока, отсутствует реактивность. Искажения увеличиваются с ростом амплитуды усиливаемого сигнала.




Рис. 4.26. Электрическая схема (а) и рабочие (нагрузочные) характеристики (б) для усилителя с полевым транзистором в схеме с ОИ:

1 — нагрузочная прямая для переменного тока; 2 — нагрузочная прямая для постоянного тока

Чем следует руководствоваться при выборе рабочей точки транзистора?

При выборе рабочей точки следует учитывать несколько факторов. В общем можно сказать, что рабочая точка должна быть выбрана таким образом, чтобы при работе транзистора с предполагаемой амплитудой входного сигнала удовлетворялись следующие основные требования: нелинейные искажения должны быть минимальны; выделяющаяся в транзисторе мощность не должна превышать допустимой мощности рассеяния; напряжения и токи не должны превышать максимальных значений.

Указанные выше условия должны удовлетворяться во всем диапазоне температур, в котором будет работать транзистор, причем нельзя превышать температуру, оговоренную заводом-изготовителем. Температура влияет на параметры транзистора, ход его характеристик и положение рабочей точки.

При заданной амплитуде входного сигнала нелинейные искажения относительно невелики в том случае, если рабочая точка выбрана так, что используемый отрезок нагрузочной прямой (для переменного тока, если усиливается переменный сигнал) не проходит через область, в которой наблюдаются нелинейности характеристик.

При работе с малыми сигналами выбор положения рабочей точки не очень критичен и нелинейные искажения малы. При больших сигналах выбор рабочей точки весьма существен и часто критичен. Если нужно обеспечить работу с минимально возможными искажениями, то рабочую точку выбирают вблизи середины используемого отрезка нагрузочной прямой, причем обычно сопротивление нагрузки и напряжение питания подбирают так, чтобы этот отрезок лежал в пределах линейного участка стоковой характеристики.

Рассеиваемая в транзисторе мощность (мощность потерь) определяется как произведение тока на напряжение коллектора (стока) в рабочей точке: Р = Iк·Uк. Выделение мощности в транзисторе вызывает увеличение его температуры, что приводит к изменению параметров, а в случае превышения допустимых границ может вызвать порчу транзистора.

Примерный вид характеристик транзистора с указанием ограничений при выборе рабочей точки представлен на рис. 4.27.



Рис. 4.27. Выходные характеристики полевого транзистора с областью выбора на них рабочей точки:

— допустимая область работы; 2 — ограничение из-за нелинейности; 3 — ограничение из-за максимальной мощности потерь Рпот = Iс·Uси; 4 — ограниченно по напряжению из-за пробоя

Как влияет температура на свойства транзистора и положение рабочей точки?

Температура транзистора значительно сильнее влияет на параметры биполярных транзисторов, чем полевых. В разной степени изменению подвержена все параметры. Особенно заметен рост коэффициента h21э при увеличении температуры, а также рост обратных токов, например ток Iкбо для кремниевых транзисторов удваивается при повышении температуры на 6 °C.

Полевой транзистор обладает меньшей зависимостью от температуры, однако четко прослеживается убывание тока Iс при увеличении температуры.

Примерный вид характеристик биполярного транзистора для разных температур представлен на рис. 4.28.



Рис. 4.28. Характеристики биполярного транзистора при 25 и 105 °C


Зависимость параметров транзистора от температуры, а следовательно, изменение токов вызывают меньшие или большие изменения положения рабочей точки. Может случиться, что под влиянием температуры рабочая точка сместится так, что появятся сильные искажения или будет превышена максимальная мощность потерь.

Для предотвращения подобных явлений часто прибегают к использованию схем стабилизации рабочей точки.

Что такое схемы питания транзисторов?

Это схемы, обеспечивающие соответствующие постоянные напряжения на электродах транзистора, т. е. устанавливающие заранее выбранную рабочую точку, называемую статической или в состоянии покоя. Схемы питания содержат источники напряжений и цепи, через которые эти напряжения подводятся к транзистору, например цепи резистивных делителей напряжения.

Подача напряжений через делители позволяет: обеспечить на электроде транзистора требуемое напряжение при использовании источника с постоянным напряжением питания, питать все электроды данного транзистора или схемы, состоящей из ряда транзисторов, от одного общего источника, обеспечить подбор сопротивления источника, «видимого» со стороны транзистора. Обычно источник питающего напряжения имеет малое внутреннее сопротивление, которое, будучи подключено ко входу транзистора, нагружает дополнительно источник управляющего сигнала. Для предотвращения этих нежелательных явлений между источником и электродами транзистора используют резисторы.

Какие самые простые схемы питания транзисторов?

Проще всего обеспечить установку рабочей точки транзистора, т. е. подать на его электроды смещение, если соединить соответствующие электроды с источником напряжения посредством отдельных резисторов (рис. 4.29).




Рис. 4.29. Простейшие схемы питания транзистора, включенного по схеме с ОБ (а) и ОЭ (б)


Для схемы ОБ (рис. 4.29, а) для входной цепи имеем

EэIэ·RэUэб = 0

Из этой зависимости при заданном Еэ и определенном (для выбранной рабочей точки) токе Iэ можно определить сопротивление резистора Rэ, необходимое для смещения перехода эмиттер — база, соответствующее рабочей точке. Для кремниевых транзисторов можно принять Uэб = 0,7 В.

Для схемы ОЭ (рис. 4.29, б) для входной цепи имеем следующую зависимость:

EбIб·RбUбэ = 0

Для определения сопротивления резистора Rб ток Iб определяют из характеристик транзистора для заданной рабочей точки либо из следующих соотношений:

Iб = Iк/h21эIб = Iэ/1 + h21э

Можно использовать более простое решение, показанное рис. 4.30, для которого достаточно одного источника питания.



Рис. 4.30. Схема питания транзистора с ОЭ при использовании одного источника


Для схемы ОБ (рис. 4.29, а) имеём:

EкIк·RкUкб = 0

для схемы ОЭ (рис. 4.29, б)

EкIк·RкUкэ = 0

Какие существуют схемы питания транзисторов с делителем напряжения?

Часто совместно с источником напряжения питания используется делитель из резисторов, обеспечивающий большую свободу при проектировании всей схемы смещения транзистора. Пример подачи смещения на МОП транзистор показан на рис. 4.31.



Рис. 4.31. Схема питания для полевого МОП транзистора с использованием делителя напряжения


Резисторы R1 и R2 делителя в этом случае выбираются таким образом, чтобы получить требуемое Uзи, определяемое формулой


Эту же самую схему смещения можно применить также в случае биполярного транзистора, однако на практике при этом добавляются одновременно схемы стабилизации рабочей точки.

Что такое схемы стабилизации рабочей точки?

Это схемы, уменьшающие влияние изменений тока Iкбо коэффициента h21э на ток коллектора Iк. Например, изменение тока Iкбо вызывает изменение полного тока, протекающего в цепи коллектора, и в результате происходит смещение рабочей точки транзистора, это в свою очередь влечет за собой изменение входного и выходного сопротивлений, изменение ширины полосы, нелинейных искажений, мощности потерь в транзисторе.

Изменение значений Iкбо и h21э наблюдается под влиянием температуры транзистора, которая зависит как от температуры окружающей среды, так и от электрической мощности, выделяемой в транзисторе.

Схемы стабилизации обычно соединены со схемами питания транзистора, образуя чаще всего общую схему питания и стабилизации. Рассматриваемые до сих пор схемы питания не обеспечивали стабилизации рабочей точки транзистора. Эффективность стабилизации подсчитывают с помощью коэффициентов стабилизации Sст, определяемых обычно как отношение приращения тока или стабилизированного напряжения к приращению тока Iкбо или коэффициента h21э, вызванного ростом температуры, например

Sст = ΔIк/ΔIкбо

Для простой схемы питания (без стабилизации) с учетом того, что Iк = h21эIб + (h21э + 1)·Iкбо имеем Sст = h21э + 1, т. е. Sст составляет десятки единиц, тогда как при идеальной стабилизации Sст = 1.

На основе рассмотрения многих схем можно показать, что на практике стабилизация чаще всего сводится к поддержанию постоянных значений тока Iк и напряжения Uкэ.

Дополнительный выигрыш от использования большинства схем, стабилизирующих рабочую точку транзистора, является уменьшение влияния разброса параметров, имеющего место для отдельных экземпляров транзисторов одного типа, на работу транзисторной схемы.

Чем характеризуется схема питания со стабилизацией в цепи эмиттера?

На рис. 4.32 представлена схема питания со стабилизацией в виде резистора, включенного в цепь эмиттера. В схеме без резистора рост тока вызывает увеличение тока в цепи коллектора и увеличение падения напряжения на резисторе, находящемся в цепи базы, что вызывает более положительное смещение перехода и дальнейший рост токов эмиттера и коллектора. Введение резистора в цепь эмиттера препятствует росту токов, поскольку мгновенный рост тока вызывает увеличение падения напряжения на этом резисторе, а следовательно, увеличение напряжения, смещающего переход в непроводящем направлении. Это в свою очередь ведет к уменьшению роста тока и, следовательно, к его стабилизации на некотором, почти постоянном уровне.

В этом случае имеем следующие приближенные соотношения:



Эффективность стабилизации тем больше, чем выше отношение. Обычно стремятся к тому, чтобы достичь значения Sст от нескольких единиц примерно до 10. Для больших значений Sст рассчитываем по формуле Sст ~= Rб/Rэ.

Стабилизирующий резистор в цепи эмиттера часто шунтируется конденсатором большой емкости. При этом резистор влияет только на рабочую точку и ее стабильность и не вызывает уменьшения усиления схемы до тех частот, пока конденсатор обладает сопротивлением намного меньшим, чем резистор Rэ.



Рис. 4.32. Схема питания со стабилизацией в цепи эмиттера


Обсуждаемую схему смещения часто называют схемой со стабилизацией на принципе эмиттерной связи.

Чем характеризуется схема стабилизации рабочей точки на основе коллекторной связи?

Такая схема представлена на рис. 4.33. В этом случае стабилизация основана на питании базы через резистор, включенный между коллектором и базой. Увеличение тока коллектора вызывает снижение потенциала на коллекторе и через резистор Rб изменение потенциала на базе так, что это вызывает уменьшение изменений тока коллектора.



Рис. 4.33. Схема питания транзистора со стабилизацией на принципе коллекторной связи


В этом случае справедливы следующие приближенные соотношения:



Сопротивление резистора Rб не может быть слишком малым, так как это вызывало бы уменьшение усиления по напряжению, поэтому следует выбрать компромисс между усилением и коэффициентом стабилизации.

Какие другие схемы стабилизации рабочей точки встречаются па практике?

Разработано много других решений, например одновременное использование эмиттерной и коллекторной связей, питание базы при использовании делителя и одновременном включении эмиттерного резистора, шунтированного конденсатором (рис. 4.34, а).



Рис. 4.34. Схема стабилизации тока коллектора с отрицательной обратной связью по постоянному току при подаче смещения на базу от делителя (а) и пример решения этой схемы (б)


Для этой схемы имеем следующие соотношения:

Uб = (R2/(R1 + R2))·Eк; Uэ = Uб - Uбэ ~= Uб

Uк = EкIк·Rк; Uкэ = EкIк·RэIэ·Rэ

Коэффициент стабилизации при этом выражается формулой


Достоинством этой схемы является достаточно большая свобода при выборе сопротивлений резисторов и, кроме того, малая зависимость рабочей точки транзистора от коэффициента h21э и его изменений.

На рис. 4.34, б представлен пример подобной схемы питания с указанием значений токов, напряжений и сопротивлений.

Помимо схем стабилизации, использующих резисторы, применяются также схемы, стабилизирующие положение рабочей точки транзистора, на основе элементов, обладающих зависимостью от температуры, например диодов (в частности, стабилитрона), термисторов, а также транзисторов. Схемы, в которых применяют подобные элементы, иногда называют компенсационными.

Как работает транзистор в диапазоне высоких частот?

При использовании транзистора для усиления сигналов высокой частоты возникают некоторые ограничения, связанные, со свойствами самого транзистора. Существенную роль играют сопротивления и емкости транзистора.

Параметры транзистора меняются в зависимости от частоты, и для высоких частот его эквивалентная схема усложняется. По мере роста частоты все большее значение приобретают пассивные составляющие полных проводимостей.

Для анализа работы транзистора в диапазоне высоких частот наиболее часто используют П-образную физическую модель (рис. 4.12,б и 4.35), и при проектировании высокочастотных транзисторных схем чаще всего используют его «четыре «четырехполюсниковые» параметры. Отдельные параметры для определенной частоты находят в справочниках из соответствующих графиков, представленных в функции частоты. Частотной зависимостью обладают также коэффициенты передачи тока h21б и h21э, с увеличением частоты их значения обычно убывают.



Рис. 4.35. Физическая модель транзистора в диапазоне высоких частот с примерными значениями параметров

Какие параметры транзистора определяют его пригодность для работы в высокочастотных схемах?

Имеется несколько таких параметров. Самыми важными являются предельные частоты транзистора fh11, fгр, fT, а также fmax. указываемые в каталогах или справочниках.

Частоты fh11 и fгр определяют частоты, на которых значение h21б или h21э падают на 3 дБ по отношению к своему значению в области низких частот. С учетом П-образной физической модели имеем следующие приближенные формулы:

fh11 ~= 1/2π·rб'э·Сб'э; fгр = fh11(1- h21б)

Частота fT (или f1) соответствует падению коэффициента h21э до значения, равного единице:

fT = f1 ~= fгр·h21э

Часто fmax определяет максимальную частоту, на которой коэффициент передачи по мощности не меньше единицы. Это — максимальная частота генерации, которая выражается приближенной формулой


Легко видеть, что предельные частоты fh11fгр тем больше, чем меньше произведение (постоянная времени) rб'эСб'э. Максимальная частота работы транзистора fmax зависит от постоянной времени rб'бСб'э, влияние которой становится заметным для частот, лежащих выше fh11. При работе в диапазоне высоких частот важную роль играет также проводимость y12. Она должна быть как можно меньше.

Каковы шумовые свойства транзисторов?

Шумы транзисторов обусловливаются тепловыми, дробовыми и структурными шумами. Источником тепловых шумов являются распределенные сопротивления полупроводника. Для биполярного транзистора решающее значение имеет величина rб. Дробовые шумы связаны с флуктуациями прохождения носителей зарядов через переходы. Структурные шумы образуются шумами поверхностной рекомбинации и шумами утечки коллектора.

Шумы зависят от частоты, выбора рабочей точки, сопротивления источника сигнала. Обычно шумы растут с ростом тока Iк.

В биполярном транзисторе в диапазоне низких частот преобладают структурные шумы, в диапазоне средних частот шумы почти не зависят от частоты, в диапазоне высоких частот шумы растут с увеличением частоты. При больших значениях внутреннего сопротивления источника сигнала шумы возрастают, если сопротивление возрастает.

В полевых транзисторах шумы обычно меньше, чем в биполярных. В частности, дробовые шумы очень малы, если ток затвора минимален. Кроме того, полевой транзистор может работать с источником сигнала с высоким внутренним сопротивлением, имея при этом очень малые шумы.

На чем основывается работа транзистора при большом сигнале?

Рассмотрение работы транзистора при большом сигнале сталкивается с рядом трудностей. Следует помнить, что физические модели транзисторов были разработаны при упрощающих предположениях, которые перестают быть справедливыми при большом сигнале. Его h- и y-параметры определяются только через малые приращения токов и напряжений и не определяют свойств транзистора для большого сигнала. В этой ситуации при использовании транзисторной схемы, предназначенной для работы в режиме большого сигнала, можно использовать лишь статические характеристики.

При выборе положения рабочей точки, помимо стремления получить малые искажения, в схемах, работающих при большом сигнале, особенно для усилителей мощности, часто учитывается мощность, потребляемая от источника питания, и мощность, рассеиваемая в транзисторе.

Что такое усилители классов А, В, С?

Как уже подчеркивалось, усилители малых сигналов обычно работают в режиме, рабочая точка которого расположена вблизи середины используемого отрезка нагрузочной прямой. В усилителях больших сигналов в зависимости от положения рабочей точки различают режимы классов А, В, АВ и С.

Работой в классе А (рис. 4.36) называют режим работы, при котором положение рабочей точки таково, что выходной ток протекает в течение времени длительности переменного входного сигнала, т. е. в течение всего периода. В классе В выходной ток протекает только в течение полупериода входного колебания. При отсутствии входного колебания выходной ток, соответствующий рабочей точке, почти равен нулю и в транзисторе выделяется очень малая мощность. Промежуточное положение рабочей точки между режимами А и В соответствует классу АВ. В классе С выходной ток протекает в течение времени, меньшего чем полупериод.

Очевидно, что наименьшие искажения сигнала имеют место в классе А, наибольшие — в классе С[14]. Эффективность схемы наибольшая в классе С, наименьшая — в классе А.




Рис. 4.36. Работа транзистора в классе А (а) и классе В (б)

Зачем транзисторы иногда размещают на радиаторах?

Рабочая температура транзистора имеет ограниченное значение, обычно зависящее от температуры коллекторного перехода.

Для кремниевых транзисторов максимальная температура перехода лежит в интервале 150–200 °C. Температура перехода зависит от выделяемой в транзисторе мощности, температуры окружающей среды и эффективности излучения тепловой энергии транзистором и платой, на которой он закреплен. Увеличение полезной мощности, полученной на выходе транзистора, вызывает увеличение рассеиваемой мощности. Рассеиваемая мощность не может превышать допустимую для полупроводникового элемента. Однако допустимую мощность можно повысить, увеличив излучение тепловой энергии.

Для этого транзистор часто размещают на металлическом элементе с как можно большей поверхностью, увеличиваемой путем создания ребер. Подобные элементы, отбирающие тепловую энергию от транзистора и излучающие ее в окружающую среду, называются радиаторами. Применение радиатора позволяет получить от данного транзистора большую мощность, чем при работе без радиатора.

Какие существуют области работы транзистора?

Существуют три такие области, зависящие от смещения переходов. При работе транзистора как усилителя малых сигналов эмиттерный переход открыт, а коллекторный закрыт. Это — активная область работы (рис. 4.37), в которой транзистор приближенно можно считать линейным активным элементом и пользоваться параметрами, приводимыми в справочниках.

Область, в которой как эмиттерный, так и коллекторный переходы смещены в обратном направлении, называют областью отсечки. В этой области ток коллектора минимален (Iк = Iк0), а напряжение на коллекторе максимально.

Областью насыщения называется область, в которой эмиттерный и коллекторный переходы смещены в проводящем направлении. Коллекторный ток достигает насыщения, напряжение на коллекторе имеет очень малое значение. В этой области входное сопротивление транзистора в схеме ОЭ очень мало, благодаря чему достигается большое постоянство амплитуды выходного колебания, не зависящее от изменения входного сигнала.



Рис. 4.37. Области работы транзистора:

— область насыщения; 2 — активная область; 3 — область отсечки

Как работает транзистор в режиме переключения?

Транзистор, работающий при малых сигналах, остается все время в активной области. Если сигнал достаточно велик, мгновенная рабочая точка транзистора может проходить через три области: отсечки, активную и насыщения. Тогда говорят, что транзистор работает в режиме переключения. Подобные условия работы наблюдаются очень часто в схемах импульсной техники (см. гл. 10) и схемах цифровой техники (см. гл. 12).

При работе с импульсным сигналом важным практическим вопросом в большинстве случаев является определение скорости, с которой может нарастать выходной ток, когда ко входу подводится сигнал с большой крутизной. Скорость зависит от источника управляющего сигнала (амплитуды и внутреннего сопротивления), цепи между источником и транзистором, управляющей цепи, а также от свойств самого транзистора и выбора его рабочей точки.

С точки зрения свойств транзистора можно показать, что скорость нарастания фронтов выходного сигнала будет тем большей, чем больше предельные частоты транзистора и чем меньше постоянные времени rб'бСб'к и rэ'бСэ'б. В случае работы при больших сигналах дополнительное влияние оказывают явления, происходящие в полупроводнике при переходе из состояния насыщения в состояние отсечки и обратно.

Работа транзистора в режиме переключения представлена на рис. 4.38.



Рис. 4.38. Работа транзистора в режиме переключения: схема (а) и формы импульса входного напряжения (б), тока базы (в), напряжения эмиттер — база (г), тока коллектора (д), напряжения коллектор — эмиттер (е)


На транзистор, находящийся первоначально в состоянии отсечки, подается управляющий прямоугольный импульс большой амплитуды, который вызывает переход в состояние насыщения перехода эмиттер — база. Ток коллектора нарастает с задержкой, зависящей не только от параметров транзистора, но и от степени управления (глубины насыщения). Крутизна выходного импульса будет тем большей, чем больше возбуждение, т. е. чем больше токи базы. Однако при этом происходит расширение импульса, поскольку выходной импульс еще «длится», несмотря на исчезновение входного импульса. Процесс обусловлен наличием в базе в состоянии насыщения высокой концентрации неосновных носителей, тогда как изменение смещения перехода коллектор — база при переключении из состояния насыщения в активную область требует небольшой концентрации этих носителей.

На это требуется некоторое время, зависящее, в частности, от глубины насыщения и длительности входного сигнала, а также от свойств транзисторов. В справочниках по транзисторам приводятся некоторые данные, определяющие время включения и выключения.

Время включения является суммой времени задержки tз и времени нарастания tн, а время выключения — суммой времени накопления (рассасывания) tр и времени среза tс. Время включения и выключения связано и с другими параметрами транзистора. Например, чем частота fт больше, тем эти времена меньше. Рост емкости С22б увеличивает время включения и выключении. Работа при большом токе коллектора увеличивает время нарастания и спада, носокращает время накопления. Возрастание тока базы вызывает уменьшение времени включения, но увеличение времени выключения. Работа при малом токе базы, обеспечивающем работу вне области насыщения, связана также с малым коэффициентом передачи транзистора по току.

С точки зрения управления транзистора различают управление током, напряжением и зарядное управление.

Что такое управление транзистора током, напряжением и зарядом?

Управлением транзистора по току называется управление входной цепью от источника с большим внутренним сопротивлением по сравнению с входным сопротивлением транзистора, а управлением по напряжению — от источника с малым внутренним сопротивлением. При управлении по току и напряжению скачкообразное изменение тока базы не вызывает мгновенного изменения тока коллекторе.

Наибольшую крутизну выходного колебания, т. е. наименьшее гремя фронта, можно получить при управлении зарядом (рис. 4.39).

Оно состоит во введении инжекции в базу требуемого заряда сразу, целиком, а не на принципе постепенного накопления этого заряда, как, например, это имеет место в случае управления при постоянном токе базы. Это осуществляется, в частности, путем использования цепи с ускоряющим конденсатором (иначе — компенсационным); импульс, связанный с наличием емкости во входной цепи, вводит в базовую область такой заряд в начальный момент, что ток коллектора очень быстро достигает своего установившегося значения.



Рис. 4.39. Управление транзистора зарядом: схема (а) и формы изменения управляющего напряжения (б), тока базы (в) и тока коллектора (г)

Как обозначаются транзисторы?

Существуют различные обозначения, которые зависят от страны и изготовителя. В иностранкой литературе чаще всего встречаются буквенно-цифровые обозначения с двумя либо тремя буквами в начале. Наиболее распространена система обозначений, в которой первая буква обозначает тип полупроводника: А — германий; В — кремний. Вторая буква обозначает тип элемента: С — транзистор маломощный низкочастотный; D — транзистор мощный низкочастотный; F — транзистор маломощный высокочастотный; L — транзистор мощный высокочастотный; S — транзистор для переключающих схем; U — транзистор мощный для переключающих схем. Определение «маломощный» обычно соответствует мощности Pмах <= 0,3 Вт; определение «низкочастотный» обозначает, что для данного транзистора граничная частота fт <= 3 МГц (или fт <= 2,5 МГц). Третья буква обозначает применение транзистора, указанное изготовителем.

В СССР используется буквенно-цифровая маркировка транзистора. В зависимости от назначения и используемого при изготовлении транзисторов материала первая буква или цифра обозначает тип полупроводника: 1 или Г — германий; 2 или К — кремний; 3 или А — арсенид галлия. Буква соответствует применению в аппаратуре широкого, а цифра — специального назначения.

Второй элемент классификация (маркировки) обозначает тип транзистора: T — биполярный; П — полевой.

Третий элемент назначения определяет назначение транзистора по частотным и мощностным свойствам (табл. 4.1).

Четвертый и пятый элементы — номер разработки транзистора, обозначается цифрами от 01 до 99.

Шестой элемент обозначения — буквенной от А до Я. Показывает разделение транзисторов данного типа по классификационным параметрам. Например, транзистор КТ605А — кремниевый, биполярный, средней мощности, высокочастотный. номер разработки 0,5, группа А с классификационным параметром h21э от 10 до 40. — Прим. ред.


Таблица 4.1

Транзистор…Третий элемент маркировки транзистора

____________________________________________

 Малой мощности (до 0,3 Вт) с граничной частотой передачи тока:

• низкие частоты до 3 МГц… 1

• средние частоты 3—30 МГц… 2

• высокие и сверхвысокие частоты (более 30 МГц)… 3

— Средней мощности (0,3–1,5 Вт) с граничной частотой передачи тока:

• низкие частоты до 3 МГц… 4

• средние частоты 3—30 МГц… 5

• высокие и сверхвысокие частоты (более 30 МГц)… 6

— Большой мощности (более 1,5 Вт) с граничной частотой передачи тока:

• низкие частоты до 3 МГц… 7

• средние частоты 3—30 МГц… 8

• высокие и сверхвысокие частоты (более 30 МГц)… 9

В справочниках помимо обозначения транзистора часто указываются тип корпуса и эскиз расположения электродов. Корпуса защищают структуру транзистора от механических повреждений, загрязнений, влияния влаги, упрощают отвод тепла, облегчают монтаж транзистора. Применяются корпуса металлические, стеклянные, керамические и из искусственных материалов. Расположение электродов зависит от типа используемого корпуса.

Что такое вакуумный триод?

Это вакуумный прибор (рис. 4.40) стремя электродами: катодом, сеткой и анодом, обладающий свойством усиления электрического сигнала. Электроды расположены в стеклянном или металлическом баллоне с вакуумом внутри.



Рис. 4.40. Условное графическое обозначение триода: общее (а) и с косвенным накалом (б)


Катод триода, накаливаемый непосредственно или косвенно с помощью подогревателя, через который протекает ток накала, эмиттирует электроны на основе эффекта термоэмиссии. Количество эмиттерных электронов зависит, в частности, от материала катода и мощности накала. Анод улавливает электроны, излученные катодом. Потенциал анода должен быть положительным относительно катода.

Число попадающих на анод электронов тем больше, чем больше положительный потенциал анода (анодное напряжение). Электроны создают в цепи анода анодный ток. Сетка триода, часто называемая управляющей сеткой, является электродом, расположенным между катодом и анодом. Она имеет форму спирали, навитой из тонкой проволоки. Сетка воздействует на распределение электрического поля между катодом и анодом, в результате чего изменяется число электронов, попадающих на анод, и соответственно сила анодного тока. Сетка обычно имеет отрицательный потенциал относительно катода.

Триоды применяются в качестве усилительных ламп низкой и высокой частоты, малой и большой мощности, а также в качестве генераторных ламп. По сравнению с транзисторами триоды имеют следующие недостатки: большие габаритные размеры, необходимость использования напряжения накала, большое напряжение питания. Достоинствами триодов являются возможность работы с большими токами, высокими напряжениями, малая чувствительность к температуре и ее изменениям, устойчивость к искрению. В маломощных схемах триоды вытеснены транзисторами и интегральными микросхемами.

На каком принципе триод усиливает электрические сигналы?

Сетка расположена к катоду ближе, чем анод, и благодаря этому она значительно сильнее воздействует на количество электронов, доходящих до анода и образующих анодный ток. Небольшое увеличение сеточного напряжения (от —3 до —2 В) вызывает большой рост анодного тока (от 10 до 20 мА), а небольшое уменьшение напряжения на сетке (от —3 до —4 В) дает заметное снижение анодного тока. Изменение анодного тока вызывает изменение падения напряжения на сопротивлении нагрузки, находящемся в цепи анода. Изменение падения напряжения на этом сопротивлении во много раз больше, чем изменение напряжения на сетке, а это означает, что в триоде имеет место усиление по напряжению.

Триод обеспечивает также большое усиление по току, поскольку управление в цепи сетки осуществляется напряжением (ток сетки в рабочей точке для усилительной схемы пренебрежимо мал).

Как обозначают токи и напряжения в схемах на лампах?

Их обозначают обычно по тем же принципам, что и на транзисторных схемах, с той лишь разницей, что используются другие буквенные обозначения электродов: анода (А, а), катода (К, к) и сетки (С, с).

В каких схемах триод работает как усилитель?

Триод может работать в трех основных схемах включения, имеющих свои аналоги в транзисторных схемах (рис. 4.41): схема с общей сеткой (ОС) — аналог схемы ОБ, схема с общим катодом (ОК) — аналог схемы ОЭ, схема с общим анодом (ОА) называется катодным повторителем — аналог схемы ОК эмиттерного повторителя. Наиболее часто используемой типовой схемой является схема ОК.





Рис. 4.41. Основные схемы включения триода:

а — с общей сеткой; б — с общим катодом; в — с общим анодом

Какими параметрами характеризуется триод?

Анодный ток триода Iа зависит от анодного Uа и сеточного напряжений Uс. Для маломощного триода анодный ток обычно равен 5—15 мА. Анодные напряжения обычно лежат в пределах 100–300 В. Сеточные напряжения находятся в диапазоне —1…—10 В. Напряжение накала составляет от нескольких до 10–20 В, ток накала обычно меньше 0,5 А, мощность накала для маломощных триодов составляет несколько ватт.

Наиболее полно триод характеризуют три параметра: внутреннее сопротивление, крутизна, коэффициент усиления.

Внутреннее сопротивление триода, или анодное сопротивление, выражается формулой



Обычно его приводят в килоомах.

Крутизна характеристики лампы обозначается как S, выражается формулой



и приводится в миллиамперах на вольт.

Коэффициент усиления обозначается через μ и выражается как



Коэффициент μ является безразмерной величиной. Знак минус означает, что для поддержания постоянного значения Iа приращения ΔUа и ΔUс должны быть разного знака. Для трех основных параметров триода существует зависимость μ = Ri·S.

Указанные параметры можно определить непосредственно (измерением) либо на основе статических характеристик триода. Их значения зависят от выбора рабочей точки.

Уравнение анодного тока триода можно записать в следующем виде:

Ia = (1/RiUa + S·Uc = (Ea/Ra)- (Ua/Ra)

Для типовых маломощных триодов имеем следующие параметры:

Ri = 1—50 кОм; S = 2—15 мА/В; μ = 5-100.

Что можно сказать о триоде как элементе схемы?

Триод является нелинейным активным элементом схемы, параметры которого зависят от условий работы, в основном от постоянных напряжений и токов в схеме, т. е. от рабочей точки и частоты. По сравнению с транзистором триод характеризуется меньшей зависимостью параметров от условий работы, в частности зависимость параметров триода от уровня сигнала является значительно меньшей, чем у транзисторов. Вид эквивалентной схемы зависит от схемы включения триода (ОА, ОК или ОС). Как правило, эквивалентные схемы представляют в виде физических моделей. Эквивалентные схемы для режима малого сигнала используются реже, поскольку физическая модель триода оказывается вполне достаточной как для малых, так и для больших сигналов. Кроме того, образующие эту модель элементы почти не зависят от уровня сигнала. Значения емкостей и индуктивностей, входящих в физическую модель, также почти не зависят от частоты, их реактивное сопротивление является функцией частоты.

По сравнению с биполярным транзистором триод как элемент схемы отличается значительно более высокими входным и выходным сопротивлениями.

Что такое схема ОК и каковы ее свойства?

Схема ОК является типовой схемой работы триода. В этой схеме сигнал подводится между сеткой и катодом, а нагрузка включается между анодом и катодом (рис. 4.42,а). В эквивалентной схеме (рис. 4.42,б) содержатся три междуэлектродные (внутриламповые) емкости Сск, Сак, Сса. Их значения зависят от конструкции лампы, формы и размеров отдельных электродов. Обычно они лежат в пределах 2–6 пФ. Емкость Сас меньше «видимой» со стороны генератора, т. е. входной емкости (динамической). Она выражается следующей формулой:

CвхСск + Сса·(1 + Кu)

где К — усиление триода по напряжению в данной схеме. Выходная емкость триода также увеличивается при росте усиления.




Рис. 4.42. Триод в усилительной схеме с ОК (а) и его физическая модель (б)


Свойства схемы ОК аналогичны со схемой ОЭ с тем отличием, что численные значения коэффициента усиления и сопротивлений другие. Важным свойством, типичным для триода, является зависимость входной и выходной емкости от усиления по напряжению.

Каковы статические характеристики триода в схеме с ОК?

Типичными статическими характеристиками триода являются: анодная характеристика (рис. 4.43, а) — зависимость анодного тока от анодного напряжения Uа при постоянном значении напряжения Uс, т. с. Iаf(Uа) при Uc = const; анодно-сеточная характеристика (рис. 4.43, б) — зависимость анодного тока от сеточного напряжения при постоянном напряжении Ua, т, е. Iаf(Uc) при Iа = const; проходная характеристика — зависимость анодного напряжения от сеточного Uc при постоянном анодном токе, т. е. Uаf(Uc) при Iа = const.

Как видно из семейств анодных характеристик, анодный ток быстро возрастает при небольшом увеличении сеточного напряжения. При росте анодного напряжения он также растет, но не столь быстро. Ток не достигает уровня насыщения из-за использования оксидных катодов. Однако это не означает, что ток, протекающий через лампу, может быть произвольно большим. Существуют ограничения максимального тока с точки зрения как срока службы катода, так и максимальной мощности, которая может быть введена в лампу. Максимальные токи указываются в справочниках.

Из сеточной характеристики видно, что при небольших положительных напряжениях на сетке начинает протекать сеточный ток.

Значение этого тока зависит от анодного напряжения. Появление сеточного тока является нежелательным явлением и вызывает искажения выходного сигнала, поэтому рабочую точку лампы, работающей в качестве усилителя, следует выбирать таким образом, чтобы работа происходила без сеточного тока даже при небольших амплитудах входного сигнала[15].




Рис. 4.43. Статические выходные (а) Iаf(Uа)) и передаточные (характеристики (б) Uc = const при Iаf(Uc)

Что такое схема ОА и каковы ее свойства?

Схему включения триода ОА часто называют катодным повторителем. Входной сигнал подается между сеткой и анодом, а нагрузку включают между катодом и анодом (см. рис. 4.41, в).

На основе эквивалентной схемы можно показать, что входная емкость относительно мала. Мало также выходное сопротивление (Rвых ~= 1/S), в то же время очень велико входное сопротивление. Усиление по напряжению схемы ОА несколько меньше единицы.

Схему ОА часто применяют в качестве трансформатора сопротивлений благодаря высокому входному сопротивлению этой схемы (около 1 МОм) и малому выходному сопротивлению (около 76 Ом). Коэффициент передачи по напряжению такого «трансформатора» близок к. единице; малые емкости схемы ОА позволяют пропускать широкую полосу частот.

Что такое схема ОС и каковы ее свойства?

В триодной схеме ОС входной сигнал подводится между сеткой и катодом, а нагрузка включается между анодом и сеткой (см. рис. 4.41, а).

Можно показать, что выходная емкость схемы ОС относительно мала, а выходное сопротивление велико. Большим достоинством схемы ОС является очень малая емкость между входом и выходом, что особенно ценно при работе с высокочастотным сигналом. Входное сопротивление схемы ОС мало (Rвх ~= 1/S) и равно примерно 200 Ом. Усиление схемы по напряжению ближе к получаемому в схеме ОК, тогда как усиление по току примерно равно единице. Схема ОС находит применение в диапазоне высоких частот.

Как выбирают рабочую точку триода?

Рабочую точку триода выбирают так же, как и у транзистора. На семействе статических характеристик Iаf(Uа) строят нагрузочную прямую. Положение рабочей точки выбирают так, чтобы получить соответствующую линейность выходного колебания без захода в область, в которой протекает сеточный ток, и не превысить допустимую мощность потерь на аноде. Это — наибольшая допустимая мощность рассеяния. Она равна произведению тока Iа и напряжения на аноде Uа, ее значение (около 1 Вт) указано в справочниках. При выборе рабочей точки следует также помнить о том, что нельзя превышать максимальных значений анодного тока напряжения, указанных заводом-изготовителем.

Как подается смещение на электроды триода?

Напряжения смещения подаются на электроды триода проще, чем у транзисторов. Для смещения триода, так же как и транзистора, в общем достаточно одного источника постоянного напряжения (положительного) стой лишь разницей, что напряжение должно быть намного больше, чем напряжение источника питания транзистора (около 200 В). Кроме того, в большинстве случаев нет необходимости в использовании стабилизирующих схем, так как работа триода очень слабо зависит от температуры окружающей среды.

Пример типичной триодной схемы с цепью питания приведен на рис. 4.44, а. На анод подается положительное напряжение, подключаемое через сопротивление нагрузки. Это последовательное питание анода, при котором анодное напряжение уменьшается по сравнению с источником на значение падения напряжения на этом сопротивлении. Иногда анод питают непосредственно от источника. Минуя сопротивление нагрузки, как это показано, например, на рис. 4.44, б.




Рис. 4.44. Последовательная (а) и параллельная (б) схема питания анода триода


Сетка триода должна иметь отрицательный потенциал по отношению к катоду, поэтому берут источник небольшого отрицательного напряжения. Однако в большинстве случаев используют автоматическое смещение, не требующее применения дополнительного источника. Для этого в цепь катода триода включают резистор Rк, на котором возникает падение напряжения, связанное с протекающим через лампу анодным током. Это падение напряжения имеет такой знак, при котором катод лампы смещается положительно относительно массы. Соединение сетки с массой через резистор Rc равнозначно отрицательному смещению сетки относительно катода. На резисторе Rc не возникает падения напряжения, если лампа работает без тока сетки. Однако резистор Rc необходим для работы лампы, поскольку через него замыкается цепь сетка — катод. Сопротивление резистора Rc обычно равно 1 МОм. Сопротивление резистора Rк составляет от нескольких сотен омов до 10–20 кОм. Для того чтобы переменные колебания не создавали на резисторе Rк падения напряжения, его шунтируют конденсатором. В противном случае возникает отрицательная обратная связь (см. гл. 8), снижающая коэффициент усиления.

Следует помнить, что описанный способ подачи смещения на сетку не удается применить для биполярного транзистора из-за противоположного знака напряжения, требуемого для смещения базы относительно эмиттера.

На чем основана работа триода в диапазоне высоких частот?

При работе транзистора в диапазоне высоких частот существенную роль играют междуэлектродные емкости и индуктивности вводов электродов (особенно катода), которые в диапазоне средних и низких частот малы и ими можно пренебречь. Большое значение имеет также время пролета электронов между катодом и анодом, влияющие на входную проводимость лампы.

Для работы в диапазоне высоких частот конструируют специальные триоды (с плоскими электродами), работающие на частотах до 6 ГГц.

Как работает триод в режиме переключения при большом сигнале?

Триод как элемент, используемый в режиме ключа (при переключении), в общем создает меньше трудностей, чем биполярный транзистор. Его существенным преимуществом является работа без сеточного тока, благодаря чему не появляется нагрузка для управляющего источника и управление по напряжению не встречает трудностей. Кроме того, не возникают явления, связанные с рекомбинацией и накоплением зарядов, благодаря чему легче удается получить форму выходного колебания, близкую к форме входной. Некоторое уменьшение крутизны фронтов может возникнуть из-за междуэлектродных емкостей. Недостатком триода как переключателя является необходимость использования большего управляющего сигнала, чем для транзистора, а также относительно высокое внутреннее сопротивление во время протекания тока. На этом сопротивлении возникает относительно большое падение напряжения, снижающее падение напряжения на сопротивлении нагрузки.

Триод является элементом, который не создает трудностей при работе с большим сигналом. При питании анода напряжением, равным, например, 280 В, получают выходные сигналы с амплитудой около 100 В. Кроме того, гораздо легче достичь относительно больших мощностей, чем от полупроводниковых элементов. Для сверхмощных триодов (около нескольких сотен киловатт) применяют специальное охлаждение.

Какие шумовые свойства имеет триод?

Источником шумов в триоде является прежде всего эмиссия электронов из катода. Шумы имеют флуктуационный (стохастический) характер. Шумы в схеме с триодом зависят, в частности, от сопротивления управляющего источника и ширины полосы пропускаемых частот. В общем шумы устройств на триодах больше, чем шумы устройств на современных транзисторах, особенно в диапазоне дециметровых волн.

Глава 5 ДРУГИЕ ТИПЫ ПОЛУПРОВОДНИКОВЫХ И ВАКУУМНЫХ ПРИБОРОВ

Что такое меза-транзистор?

Это транзистор, выполненный таким образом, что на пластинке полупроводника, образующей коллектор, с помощью диффузии создается область базы, а на поверхности пластины напыляются выводы базы и эмиттера в виде полосок (рис. 5.1). Избыток материала, непосредственно не прилегающий к области базы, удаляется путем травления. Название «меза» (от испанского — стол) связано с характерной формой транзистора, сделанного этим методом. Существуют меза-транзисторы, выполненные на основе эпитаксиальных пленок и характеризующиеся очень узкими р-n переходами. Меза-транзисторы имеют высокую граничную частоту (несколько сотен мегагерц), особенно в эпитаксиальном исполнении, и также могут иметь большую выходную мощность.



Рис. 5.1. Структура диффузионного меза-транзистора

Что таксе планарный транзистор?

Это диффузионный транзистор плоской конструкции, в котором оба перехода выполнены методом диффузии и расположены на одной и той же стороне кремниевой пластины (рис. 5.2). Поверхность такого транзистора покрыта тонким защитным слоем двуокиси кремния, благодаря чему обеспечивается высокое постоянство параметров во времени, в частности малые токи утечки и высокая надежность.



Рис. 5.2. Структура планарного транзистора

(1 — слой двуокиси кремния)

Что такое однопереходный транзистор?

Это транзистор с одним переходом, созданный путем вплавления стерженька из p-материала (алюминий) в монокристаллическую пластинку из материала n-типа (кремнии). К пластинке присоединены два вывода, играющие роль баз, стерженек, расположенный несимметрично относительно база — эмиттер. Такой транзистор называют также двухбазовым диодом (рис. 5.3).



Рис. 5.3. Структура однопереходного транзистора (а) и его графическое изображение (б):

1 — стержень р-типа; 2р-n-переход: 3 — пластина n-типа; 4 — омические контакты


Сопротивление между базами составляет около нескольких тысяч ом. Обычно база Б2 смещена в положительную сторону относительно базы Б1. При подведении к эмиттеру соответствующего положительного напряжения протекает большой ток эмиттера (при небольшом падении напряжения между эмиттером Э и базой Б1). При этом на эмиттерной характеристике транзистора наблюдается область отрицательного сопротивления (рис. 5.4), благодаря чему однопереходный транзистор находит применение в генераторах и триггерах, а также в цепях регулирования. В области отрицательного сопротивления осуществляется очень быстрое переключение.



Рис. 5.4. Статическая характеристика однопереходного транзистора

(1 — область отрицательного сопротивления)

Что такое полевой транзистор с двумя затворами?

Это полевой МОП транзистор с каналом типа n (или р) с двумя затворами, управляющими током стока (рис. 5.5). При таком решении в схеме с общим источником достигается хорошая развязка входных и выходных цепей, что позволяет транзистору работать в качестве усилителя высокой частоты до частот около 1000 МГц. При этом трудности, связанные с обратным проникновением сигналов, не возникают. Полевые транзисторы с двумя затворами часто применяют в смесителях в диапазоне высоких частот.



Рис. 5.5. Структура полевого транзистора с двумя затворами с каналом n-типа (а) и его условное графическое обозначение (б):

1 — изолирующий слой; 2 — подложка р-типа; 3 — исток n; 4 — островок; 5 — сток n

Что такое транзистор с неоднородной базой?

Это планарный транзистор, в котором между базой и коллектором располагается i-слой собственного полупроводника. При этом уменьшается область, обедненная носителями (вблизи перехода коллектор — база) при обратном смещении коллектора, сокращается время пролета носителей на участке база — коллектор и тем самым достигается увеличение максимальной частоты транзистора. Графическое изображение транзисторов с неоднородной базой представлено на рис. 5.6.




Рис. 5.6. Условное графическое обозначение транзистора с неоднородной базой типа p-n-i-p (а) и р-n-i-n (б)

Что такое фототранзистор?

Это трехслойный полупроводниковый прибор с двумя р-n переходами и тремя или двумя выводами, в котором выходной ток изменяется с помощью внешнего облучения (освещения) и электрического сигнала, подводимого к транзистору. Освещение влияет на сопротивление области эмиттер — база. Фототранзистор обладает большей чувствительностью, чем фотодиод, и находит применение в измерительных схемах и автоматике. Существуют также полевые фототранзисторы, работающие с очень малыми входными токами и малыми шумами.

Что такое диодный тиристор?

Это полупроводниковый р-n-р-n прибор с тремя переходами и двумя выводами, имеющий два устойчивых рабочих состояния. В одном состоянии ток, протекающий через прибор, мал, в другом — велик. Диодный тиристор можно рассматривать как последовательное и встречное включение трех диодов (рис. 5.7) или как соединение двух транзисторов типов р-n-р и n-р-n. Тиристор смещен в проводящем направлении, если на его аноде положительное напряжение; при этом диоды Д1 и Д2 открыты. Для диодного тиристора встречается также название диод Шокли или динистор.



Рис. 5.7. Структура (а), эквивалентная схема (б) и условное графическое обозначение диодного тиристора (в)

Какой вид имеет вольт-амперная характеристика диодного тиристора?

Типичный вид вольт-амперной характеристики диодного тиристора, т. е. зависимость протекающего через тиристор тока от подводимого напряжения, представлен на рис. 5.8. При подведении к аноду отрицательного напряжения (при смещении тиристора в непроводящем направлении) через тиристор течет очень малый обратный ток (так называемое состояние запирания тиристора), дифференциальное сопротивление в этой области очень велико (несколько десятков мегом). При превышении обратного напряжения пробоя Uобр наступает резкое увеличение этого тока. При подаче на анод тиристора положительного напряжения, т. е. при его смещении в проводящем направлении, возможны два состояния: выключенное (запертое) и включенное (отпертое) состояние, в котором дифференциальное сопротивление тиристора очень мало (несколько ом).

Для перехода из выключенного во включенное состояние требуется превышение напряжения включения Uвкл. Процесс перехода длится определенное время, связанное с движением носителей зарядов через переходы. Для возврата в выключенное состояние требуется отключение или соответствующее уменьшение внешнего напряжения.



Рис. 5.8. Типичный вид вольт-амперной характеристики диодного тиристора:

— ток выключения; 2 — включенное (открытое) состояние; 3 — запертое состояние (отсутствие проводимости); 4 — лавинный пробой; 5 — напряжение включения; 6 — выключенное (закрытое) состояние

Что такое симметричный диодный тиристор?

Это тиристор со структурой, соответствующей двунаправленному четырехслойному диоду. Из характеристики такого тиристора (рис. 5.9) видно, что его свойства одинаковы при смещении в проводящем и запирающем направлениях. Симметричный диодный тиристор, или двунаправленный тиристор, называется также двунаправленным диодным выключателем или динистором.



Рис. 5.9. Характеристика симметричного диодного тиристора (а) и его условное графическое обозначение (б)

Что такое триодный тиристор?

Это полупроводниковый прибор, представляющий собой четырсхслойную структуру, имеющую дополнительный третий вывод, называемый управляющим электродом, соединенный с внутренней областью р-типа (рис. 5.10). Управляющий электрод дает возможность включать тиристор при анодном напряжении, меньшем напряжения включения. Триодный тиристор называется также кремниевым управляемым выпрямителем или просто тиристором.



Рис. 5.10. Структура триодного тиристора (а) и его условное графическое обозначение (б)


Семейство статических характеристик триодного тиристора представлено на рис. 5.11. Вид характеристик зависит от тока управляющего электрода. При положительном смещении анода и отсутствии сигнала управления (Iупр = 0) вид характеристик такой же, как и у диодного тиристора, при подаче на управляющий электрод положительного напряжения переход тиристора во включенное состояние происходит при значениях анодных напряжений, меньших напряжений включения, соответствующего нулевому управляющему току (Iупр = 0). Чем больше ток управления Iупр, тем меньше соответствующее ему напряжение включения.



Рис. 5.11. Статические характеристики триодного тиристора в диапазоне положительных анодных напряжений


После перехода тиристора со включенное состояние цепь управляющего электрода перестает влиять на анодный ток и «погасить» тиристор (вывести его из включенного состояния) с помощью управляющего электрода невозможно. Тиристор, который удается включить током управляющего электрода, называется незапираемым тиристором. Его выключение возможно путем прерывания протекания анодного тока. Это осуществляется при помощи отключения анодного напряжения, при замыкании цепи анод-катод или при переходе через нуль в случае питания анода синусоидальным напряжением.

Каковы параметры тиристоров?

Тиристоры могут работать в большом диапазоне напряжений, токов и температур, особенно при дополнительном водяном или воздушном охлаждении. Современные тиристоры работают при напряжениях до нескольких тысяч вольт и токах со средним значением до нескольких сотен ампер. Дифференциальное сопротивление тиристоров во включенном состоянии очень мало и разно 0,01—0,1 Ом. В выключенном состоянии сопротивление тиристоров обычно больше 100 кОм. Время включения в зависимости от конструкции тиристора от 0,1 до нескольких микросекунд, а время выключения значительно больше (5—30 мкс).

Что такое запираемый тиристор?

Это тиристор, структура и вольт-амперная характеристика которого такие же, как у триодного тиристора, с той лишь разницей, что с помощью управляющего электрода можно его как включить, так и выключить. Графическое изображение такого тиристора, называемого иногда запираемым (англ. GTO — gate turn-off switch), представлено на рис. 5.12. Следствием возможности выключения является значительное увеличение тока управляющего электрода, требуемого для включения, по сравнению с незапираемым тиристором (до 20 мА вместо 30 мкА). Запираемые тиристоры выпускаются в настоящее время для работы при токах до нескольких ампер и мощности потерь до 20 Вт.



Рис. 5.12. Условное графическое обозначение запираемого тиристора с управлением по аноду (а) и катоду (б)

Что такое тетродный тиристор?

Это тиристор с двумя управляющими электродами: анодным и катодным. Структура тетродного тиристора и его графическое изображение представлены на рис. 5.13. Анодный управляющий электрод может быть использован как для включения, так и для выключения тиристора.



Рис. 5.13. Структура тетродного тиристора (а) и его условное графическое обозначение (б)


Для включения необходимо подать на управляющий электрод импульс отрицательной полярности, для выключения положительной. Тетродный тиристор часто называют кремниевым управляемым переключателем. Достоинством тетродных тиристоров является меньшее время выключения (около 1—30 мкс), чем у триодных тиристоров. Выпускаемые в настоящее время тетродные тиристоры работают при токах до нескольких сотен миллиампер при рассеиваемой мощности до 0,5 Вт. Вольт-амперные характеристики обоих типов тиристоров имеют одинаковый вид.

Что такое симистор?

Это симметричный тиристор с одним управляющим электродом, который может быть включен как при положительном, так и при отрицательном напряжении смещения анода с помощью положительного или отрицательного импульса, поданного на управляющий электрод. Вид характеристики симистора и его графическое изображение представлены на рис. 5.14.



Рис. 5.14. Вольт-амперная характеристика симистора (а) и его условное графическое обозначение (б):

1 — отрицательный и 2 — положительный второй анод

Для каких целей используются тиристоры?

Тиристоры широко применяются в управляемых выпрямителях, стабилизаторах напряжения (см. гл. 6) в качестве переключателей, выключателей и основных элементов в технике автоматического регулирования.

Что такое фототиристор?

Это тиристор с одним управляющим электродом и окошком в корпусе, позволяющим освещать один из переходов в р-n-р-n структуре. Включение фототиристора зависит как от тока управляющего электрода, так и от падающего через окошко света. Фототиристоры находят широкое применение в схемах регулирования и логических схемах.

Что такое микроэлектроника?

Определение «микроэлектроника» охватывает область электроники, занимающуюся проектированием и изготовлением интегральных микросхем, позволяющих значительно уменьшить (в несколько сотен или даже тысяч раз) размеры электронных устройств.

Что такое интегральные микросхемы?

Это схемы, содержащие в виде одного электронного микроузла ряд основных элементов (резисторы, конденсаторы, диоды, транзисторы), изготовленных в едином технологическом цикле и образующих соответствующую электронную схему, выполняющую запланированную и определенную функцию, например усилителя, генератора, триггера, логической схемы, и имеет определенные технические параметры. Составляющие элементы электронной схемы и их межсоединения изготавливаются внутри (в объеме), либо на поверхности общей подложки и образуют неразъемное целое. Интегральная микросхема как микроузел предназначена для непосредственного монтажа в электронных устройствах и образует вместе с корпусом небольшую «таблетку» прямоугольной формы (рис. 5.15) с выводами для пайки. В зависимости от технологии и назначения интегральная микросхема эквивалентна электронной схеме, содержащей обычно от единиц до нескольких сотен и более отдельных (дискретных) пассивных и активных элементов.



Рис. 5.15. Внешний вид интегральной микросхемы

Что такое интегральные схемы малой и большой степени интеграции?

Интегральные микросхемы, содержащие до 100 пассивных и активных элементов[16], принято называть схемами средней степени интеграции (англ. MSI), а схемы, содержащие свыше 100 элементов, — большой степени интеграции. Существуют также схемы с малой степенью интеграции, содержащие небольшое количество элементов. Например, типичная схема БИС содержит несколько сотен элементов, выполненных на пластинке размерами (без корпуса) 1,5х3 мм.

Какие преимущества дает применение интегральных микросхем?

Применение интегральных микросхем вместо схем, состоящих из дискретных элементов, дает ряд преимуществ, из которых важнейшими являются: уменьшение габаритных размеров (миниатюризация) и массы устройства, увеличение надежности, снижение стоимости изготовления устройств и уменьшение потребления материалов. Введение интегральных микросхем позволило разработать устройства, изготовление которых при использовании дискретных элементов было бы вообще невозможным или неэкономичным.

Применение интегральных микросхем создает также и некоторые неудобства. Ограниченный выбор типов этих схем иногда вынуждает разработчиков «подгонять» свои решения к существующим интегральным микросхемам. Интегральные микросхемы создают также некоторые трудности при монтаже, в частности при пайке. Они крайне чувствительны к искрениям и коротким замыканиям в схеме.

Какие типы интегральных микросхем встречаются в электронике?

Существуют четыре типа интегральных микросхем, отличающихся технологией изготовления и свойствами: полупроводниковые, тонкопленочные, толстопленочные, гибридные. Наиболее распространены полупроводниковые интегральные микросхемы.

Интегральные микросхемы можно разделить на две группы с точки зрения условий работы содержащихся в них элементов: цифровые интегральные микросхемы и аналоговые интегральные микросхемы (часто называемые линейными интегральными микросхемами). В цифровых схемах активные элементы выполняют роль переключателей, которые могут принимать два крайних состояния: отпирания и запирания (или включения и выключения). В аналоговых схемах произвольный входной сигнал (в определенном интервале линейной работы) вызывает соответствующий выходной сигнал. К цифровым схемам относятся триггеры, к линейным — усилители.

Что такое полупроводниковые интегральные микросхемы?

Это интегральные микросхемы, все пассивные и активные элементы которых изготовлены в одной пластинке полупроводника (монокристалле кремния). Большую часть пластинки по толщине составляет подложка, и только в тонком приповерхностном слое находятся элементы схемы и соединения между ними, созданные методом диффузионно-планарной технологии. Такая технология позволяет создать в пластинке полупроводника (кремния) области с разным типом проводимости (р и n), а также соединения этих областей с металлическими контактами. Области с разным типом проводимости образуют переходы, выполняющие функции резисторов, конденсаторов, диодов, транзисторов. Тип проводимости определяется концентрацией примеси. Избыток доноров дает область с проводимостью типа n, избыток акцепторов — область с проводимостью типа р. Процесс изменения типа проводимости путем добавления примесей называется компенсацией.

Атомы примесей вводятся в полупроводник через поверхность с помощью диффузии, например путем помещения полупроводника в смесь паров с атомами примеси придостаточно высокой температуре. Возможно проведение даже тройной диффузии, при которой получают трехслойную структуру, содержащую два перехода; наиболее глубокой является первая диффузия. Ограничение областей, в которых путем диффузии примесей получают изменение типа проводимости, осуществляется с помощью слоев двуокиси кремния, предохраняющих от диффузии участки, покрытые таким слоем. Слой двуокиси кремния на пластинке создается окислением поверхности пластинки при высокой температуре. Вскрытие определенных участков (так называемых окошек) в слое окисла для проведения диффузии осуществляется растворением окисла в плавиковой кислоте. В процессе удаления слоев окисла с определенных участков поверхности пользуются фотомасками, облучаемыми ультрафиолетовыми лучами. Участки полупроводника, покрытые светочувствительной эмульсией и не засвеченные через маску (шаблон), образованную системой прозрачных и непрозрачных участков, вытравливаются. Этот процесс называется фотолитографией.

Слой окисла используется также для защиты поверхности полупроводника после окончания производственного процесса от загрязнений и влияния окружающей среды. Это — пассивация поверхности.

Полупроводниковые интегральные микросхемы являются наиболее распространенным типом интегральных микросхем, обеспечивающих максимальную миниатюризацию и надежность. При массовом производстве являются наиболее дешевыми. Плотность упаковки в полупроводниковых интегральных микросхемах доходит даже до нескольких тысяч элементов и более на 1 мм2.

Как выполняются диоды и транзисторы в полупроводниковых интегральных микросхемах?

Изготовление диода осуществляется относительно просто. Используется процесс диффузии, создающий один р-n переход. Структура диода в интегральной микросхеме характеризуется плоским планарным) переходом, например таким, как на рис. 5.16.


Рис. 5.16. Структура полупроводникового диода в интегральной микросхеме:

— контакт; 2 — металлизация; 3 — двуокись кремния


Электрические параметры диффузионного диода зависят от площади перехода, распределения и концентрации примесей. Транзисторы также изготавливаются на основе использования диффузии для получения двух переходов в планарной структуре (рис. 5.17).



Рис. 5.17. Схематическая структура транзистора в интегральной схеме:

— первая, 2 — вторая, 3 — третья диффузии

Как создаются резисторы в полупроводниковых интегральных микросхемах?

Сопротивление материала зависит от его удельного сопротивления (сопротивления, определенного на длине 1 см для поперечного сечения этого материала, равного 1 см2), длины, площади и температуры. У полупроводниковых интегральных микросхем резистор создается путем диффузии слоя типа р в полупроводнике типа n или наоборот (рис. 5.18).



Рис. 5.18. Структура резистора в полупроводниковой интегральной микросхеме


По двум концам созданной таким образом резистивной дорожки располагаются металлические контактные площадки, между которыми и «действует» сопротивление, зависящее от формы канала и количества примесей в нем. Ограничивающий такой канал переход, естественно, смещен в обратном направлении. Описываемым способом получают сопротивления от нескольких ом до нескольких десятков килоом. Точность диффузионного резистора невысокая и составляет обычно примерно 20 %, однако относительный разброс сопротивлений резисторов для интегральных микросхем одного типа составляет около ±2 %.

Как изготавливают конденсаторы в полупроводниковых интегральных микросхемах?

Емкостные элементы создаются путем использования емкости р-n перехода, смещенного в обратном направлении. Заряд в запирающем слое зависит от напряжения смещения. Кроме того, емкость перехода зависит от площади перехода и распределения в нем примесей. Легко получают емкости 100—1000 пФ/мм2. Из-за ограниченной площади перехода возможности получения больших емкостей перехода также ограничены. Недостатками таких конденсаторов являются большая температурная зависимость, а также ограничение амплитуды переменного напряжения, поскольку переход в любых условиях работы должен быть смещен отрицательным напряжением, если он должен представить собой емкость и работа должна происходить в линейном диапазоне.

Как создаются индуктивности в полупроводниковых интегральных микросхемах?

Создание индуктивности в полупроводниковых интегральных микросхемах связано с некоторыми трудностями. В связи с этим при преобразовании классической схемы в схему, предназначенную для интеграции, следует применять RC-элементы и исключать элементы L. Трудности создания индуктивности в полупроводниковых микросхемах оказывают непосредственное влияние на выбор и структуру схем, предназначенных для интегрального исполнения. Приходится заменять схемы, построенные из дискретных элементов и содержащие индуктивности, несколько более громоздкими схемами, однако без индуктивности.

Некоторое увеличение схемы, предназначенной для интегрального исполнения, однако, имеет второстепенное значение. С этой точки зрения проще создавать схемы цифровой техники, так как они обычно реализуются без индуктивности (триггеры, логические элементы).

Что такое тонкопленочные интегральные микросхемы?

Это схемы, элементы которых совместно с межсоединениями создаются в виде тонких пленок[17], (проводящих, резистивных, диэлектрических и полупроводниковых) разных материалов, осажденных на общей стеклянной или керамической подложке. Схемы подобного типа изготавливают напылением в вакууме через соответствующие маски.

Обычно в виде тонкопленочных схем изготавливаются пассивные схемы. В отличие от полупроводниковых конденсаторов с р-n переходом емкость тонкопленочных конденсаторов не зависит от напряжения и может иметь значительно большее значение (например, в виде многослойных конденсаторов). Тонкопленочные резисторы также могут иметь большие сопротивления. Кроме того, их точность может быть очень высокой, а температурная зависимость слабой. Активные элементы в тонкопленочной технике пока еще недостаточно освоены, поэтому тонкопленочная техника не находит широкого практического применения.

Что такое толстопленочные интегральные микросхемы?

Это схемы, отличающиеся от тонкопленочных прежде всего тем, что они изготовлены путем вжигания окислов[18], расположенных на керамической подложке. Их применение ограничено, хотя встречаются чаще, чем тонкопленочные схемы. Толстопленочные схемы охватывают лишь пассивные схемы.

Что такое гибридные интегральные микросхемы?

Это схемы, изготовленные путем использования различных технологических методов, чаще всего такие, в которых резисторы, конденсаторы и их межсоединения выполнены с помощью тонкопленочной или толстопленочной технологии на керамической плате, а диоды и транзисторы представляют собой дискретные компоненты, вмонтированные в эту схему. Затем всю сборку заливают изолирующей смолой. В других вариантах пассивные тонкопленочные элементы напыляются на полупроводниковую пластинку, содержащую активные полупроводниковые элементы.

Что такое термистор?

Это нелинейный полупроводниковый резистор, сопротивление которого зависит от температуры, причем рост температуры вызывает уменьшение сопротивления. Изменения температуры в термистора могут возникать под влиянием изменений внешней температуры или при изменении тока, протекающего через термистор. Рост тока вызывает увеличение температуры, что ведет к убыванию сопротивления, в результате чего напряженке ка термисторе может оставаться постоянным в определенном диапазоне изменения тока.

Примерный вид характеристик термистора и его графическое изображение представлены на рис. 5.19. Термисторы имеют широкий интервал номиналов сопротивлений. Их применяют для стабилизации напряжения, для компенсации влияния изменений температуры и т. д.



Рис. 5.19. Характеристики термистора (а) и его условное графическое обозначение (б)

Что такое варистор?

Это нелинейный полупроводниковый резистор, сопротивление которого зависит от напряжения. Примерный вид характеристики варистора и его графическое изображение представлены на рис. 5.20. Варисторы применяются, в частности, для стабилизации напряжения.



Рис. 5.20. Характеристика варистора (а) и его графическое изображение (б)

Что такое тиратрон?

Это газонаполненная лампа, являющаяся аналогом тиристора в том смысле, что помимо анода и катода содержит также электрод, используемый для изменения состояния лампы (пропускание или запирание). Примерная характеристика тиратрона и его графическое изображение показаны на рис. 5.21. Тиратроны выпускаются для работы при напряжениях от 100 В до 20 кВ и токах от долей ампера до 1000 А. Тиратроны применяют в схемах выпрямителей.



Рис. 5.21. Характеристика тиратрона (а) и его условное графическое обозначение (б)

Какие многосеточные лампы применяются в электронике?

Существует несколько типов многосеточных ламп: лампа с двумя сетками — тетрод, с тремя — пентод, с четырьмя — гексод, с пятью — гептод и с шестью — октод. Как известно, электронные лампы применяют все реже, особенно в маломощных схемах. Однако встречаются еще схемы с тетродами и пентодами, в основном в устройствах очень большой мощности.

Как работает тетрод и какова его характеристика?

От триода тетрод отличается конструктивно добавлением второй сетки, называемой экранирующей и расположенной в лампе между управляющей сеткой и анодом. На экранирующую сетку подается положительное, но меньшее, чем на анод, напряжение. Присутствие этой сетки значительно уменьшает емкость между управляющей сеткой и анодом, что ведет к уменьшению проникновения сигнала между цепями анода и первой сетки. Введение второй сетки в значительной степени уменьшает влияние анодного напряжения на анодный ток. Благодаря этому в тетроде роль управляющего электрода играет только первая сеткам изменения анодного напряжения оказывают малое влияние на работу тетрода как усилителя.

Принцип действия тетрода состоит в следующем. Излученные катодом электроны ускоряются из-за действия второй сетки, на которую подано положительное по отношению к катоду напряжение. Электроны достигают второй сетки, и большинство их пролетает через нее, попадая на анод. Анодное напряжение, которое больше, чем напряжение второй сетки, почти не влияет на количество электронов, попадающих на анод. Поэтому характеристика Iа = f(Uа) для тетрода (рис. 5.22) при напряжениях Ua > UC2 почти горизонтальна (полога). Сопротивление лампы и ее коэффициент усиления велики.



Рис. 5.22. Примерный вид характеристик тетрода (а) и его условное графическое обозначение (б)


При напряжениях Ua < UC2 электроны, достигающие анода, выбивают из него вторичные электроны, которые двигаются в направлении второй сетки, имеющей большее положительное напряжение, чем анод. Когда число вторичных электронов больше числа первичных, анодный ток изменяет направление (участок АВ на характеристике). В определенном (динатронном) интервале напряжений лампа имеет отрицательное сопротивление и может быть использована для генерирования колебаний.

Разработаны лучевые тетроды специальной конструкции, у которых на выходной характеристике Iа = f(Uа) нет участка, соответствующего отрицательному сопротивлению.

Как работает пентод и каковы его характеристики?

Пентод по сравнению с тетродом отличается в конструктивном отношении введением третьей сетки, называемой нулевой, защитной или антидинатронной и расположенной между второй сеткой и анодом. Защитная сетка соединена (снаружи или внутри лампы) с катодом лампы. Действие этой сетки заключается в создании нулевого потенциала между анодом и второй сеткой. Выбитые из анода вторичные электроны не попадают на вторую сетку, как это имеет место в тетроде (даже если ее потенциал значительно выше потенциала анода), и возвращаются к аноду и улавливаются им. На характеристике пентода (рис. 5.23) отсутствует участок с отрицательным сопротивлением.


Рас. 5.23. Анодные характеристики пентода (а) и его условное графическое обозначение (б)


Роль анода сводится только к собиранию электронов. В пентоде, так же как и в тетроде, анодное напряжение оказывает очень слабое влияние на анодный ток. Внутренние емкости пентода во много раз меньше, чем у триода (тысячные доли пикофарад). В то же время по сравнению с триодом пентод имеет значительно большие внутреннее сопротивление (до нескольких мегом), коэффициент усиления и крутизну (до 10–20 мА/В). Благодаря этим свойствам пентода удается получать большое усиление в диапазоне как низких, так и высоких частот. Коэффициент усиления по напряжению Кu пентода, работающего в качестве усилителя и нагруженного сопротивлением, значительно меньшим, чем внутреннее сопротивление пентода, приближенно равен произведению крутизны S на сопротивление нагрузки RнКu = S·Rн. Из-за высокого внутреннего сопротивления пентод в большинстве случаев можно рассматривать как источник, ток которого не зависит от сопротивления нагрузки в широком интервале изменений этого сопротивления, т. е. как источник тока. Недостатком пентода как усилителя являются большие шумы, чем получаемые в случае триода. Это связано со значительно более высоким входным сопротивлением пентода по сравнению с триодом, что в основном следует из того факта, что малая емкость Са. с в пентоде ограничивает обратное влияние с выхода на вход.

Как работает электронно-лучевая трубка?

Электронно-лучевые трубки — это электровакуумные приборы, в которых образуется электронный пучок малого поперечного сечения, причем электронный пучок может отклоняться в желаемом направлении и, попадая на люминесцентный экран, вызывать его свечение (рис. 5.24). Электронно-лучевая трубка является электронно-оптическим преобразователем, превращающим электрический сигнал в соответствующее ему изображение в виде импульсного колебания, воспроизводимого на экране трубки. Электронный пучок образуется в электронном прожекторе (или электронной пушке), состоящем из катода и фокусирующих электродов. Первый фокусирующий электрод, который называют также модулятором, выполняет функции сетки с отрицательным смещением, направляющей электроны к оси трубки. Изменение напряжения смещения сетки влияет на число электронов, а следовательно, на яркость получаемого на экране изображения. За модулятором (в направлении к экрану) расположены следующие электроды, задачей которых является фокусирование и ускорение электронов. Они действуют на принципе электронных линз. Фокусирующе-ускоряющие электроды называются анодами и на них подается положительное напряжение. В зависимости от типа трубки анодные напряжения имеют значения от нескольких сотен вольт до нескольких десятков киловольт.



Рис. 5.24. Схематическое изображение электронно-лучевой трубки:

1 — катод; 2 — анод I: 3 — анод II; 4 — горизонтальные отклоняющие пластины; 5 — электронный пучок; 6 — экран; 7 — вертикальные отклоняющие пластины; 8 — модулятор


В некоторых трубках фокусировку пучка производят с помощью магнитного поля путем использования катушек, расположенных снаружи лампы, вместо электродов, находящихся внутри трубки и создающих фокусирующее электрическое поле. Отклонение пучка также осуществляется двумя методами: с помощью электрического или магнитного поля. В первом случае в трубке помещают отклоняющие пластины, во втором — снаружи трубки монтируют отклоняющие катушки. Для отклонения как в горизонтальном, так и в вертикальном направлениях используют пластины (или катушки) вертикального или горизонтального отклонения луча.

Экран трубки покрыт изнутри материалом — люминофором, который светится под влиянием бомбардировки электронами. Люминофоры отличаются различным цветом свечения и разным временем свечения после прекращения возбуждения, которое называется временем послесвечения. Обычно оно составляет от долей секунды до нескольких часов в зависимости от назначения трубки.

Где применяются электронно-лучевые трубки?

Электронно-лучевые трубки в зависимости от их свойств и параметров находят очень широкое применение в измерительных приборах, в частности осциллографах (осциллоскопах), в качестве трубок, воспроизводящих колебания токов и напряжений, в радиолокационной технике и телевидении, в качестве приемных трубок — кинескопов.

Что такое кинескоп?

Это электронно-лучевая трубка, предназначенная для воспроизведения телевизионного изображения, подводимого к трубке в виде электрического сигнала. Электрический видеосигнал, представляющий изображение, подводится к катоду. Он определяет яркость свечения точки на экране в данный момент, а сигналы, подводимые к отклоняющим катушкам (вертикальным и горизонтальным), — положение этой точки в тот же момент времени. Время послесвечения кинескопа подбирается таким, чтобы свечение каждой точки длилось настолько долго, чтобы одновременно наблюдались все поочередно высвечиваемые точки изображения. Впечатление непрерывности структуры изображения и непрерывности свечения на экране является следствием не только соответственно длительного послесвечения, но прежде всего особенности человеческого зрения, его инерционности и ограниченной разрешающей способности. В кинескопах, предназначенных для телевидения, применяют только магнитное отклонение с помощью катушек, расположенных снаружи трубки. В кинескопах для цветного телевидения, применяют три типа люминофоров с разным цветом свечения: зеленым, красным и синим. Такие люминофоры, например в виде очень малых таблеток, размещают в определенном порядке рядом друг с другом на экране трубки. Каждый из трех люминофоров возбуждается пучком электронов, выходящих из отдельной электронной пушки. Значения анодных напряжений в кинескопах для черно-белого телевидения не более 20 кВ, а в трубках, предназначенных для цветного телевидения, не более 30 кВ.

Что такое запоминающие трубки?

Это электронно-лучевые трубки, предназначенные для накопления (запоминания) информации и воспроизведения этой информации по истечении длительного времени (нескольких часов). С этой целью в трубке предусмотрен дополнительный накопительный электрод, на котором электронный пучок образует определенное поверхностное распределение зарядов, представляющее записываемую информацию. В качестве запоминающих трубок используют также электронно-лучевые осциллографические трубки с очень большим временем послесвечения.

Что такое передающие трубки?

Это преобразователи, заменяющие оптическое изображение соответствующим ему электрическим сигналом. Передающие трубки работают на принципе использования явления фотоэмиссии или фотоэлектрической проводимости. Изображение с помощью объектива проектируется на пластину со светочувствительным материалом. Под влиянием света на пластине (мишени) возникает плоское распределение электрических зарядов, соответствующее распределению света и тени в проецируемом оптическом изображении. Электронный пучок, выходящий из электронной пушки передающей трубки в направлении мишени, вызывает последовательное преобразование «зарядного изображения» мишени («изображения», созданного различными электрическими зарядами) в ток, зависящий от этих зарядов, т. е. от света, падающего в данное место мишени. Последовательность преобразования отдельных зарядов в электрический ток задается телевизионной системой. Существуют различные виды передающих трубок. Чаще всего применяют трубки, называемые видиконами или суперортиконами (или ортиконом изображения).

Что такое декадные счетные лампы?

Декадные лампы (декатроны) — лампы тлеющего разряда (газосветные), предназначенные для счета импульсов в десятичном исчислении[19]. Типичная лампа такого типа имеет один анод и девять катодов, расположенных по окружности. Под влиянием подводимых к лампе импульсов возникают разряды, переходящие после каждого импульса на следующий катод. Светящееся пятно указывает цифру, соответствующую числу импульсов.

Что такое клистроны и магнетроны?

Это лампы специальной конструкции, используемые в технике сверхвысоких частот для усиления или генерирования колебаний. Их применяют в телевизионных и радиолокационных передающих устройствах большой мощности.

Что такое датчики на эффекте Холла?

Это полупроводниковый прибор, использующий эффект Холла, основанный на том, что в полупроводниковой пластинке, включенной в электрическую цепь и соответствующим образом расположенной в магнитном поле, возникает напряжение, зависящее от этого поля. Датчики на эффекте Холла применяют для измерения напряженности поля, тока и мощности, а также в качестве усилителей и генераторов.

Глава 6 ВЫПРЯМИТЕЛИ

Что такое выпрямление электрических колебаний?

Это процесс, в результате которого переменное входное электрическое колебание преобразуются в выходное колебание только одного знака (рис. 6.1). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.



Рис. 6.1. Выпрямление синусоидального колебания:

а, в — однополупериодное; б — двухполупериодное

На каком принципе осуществляется выпрямление?

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Какие электронные элементы используют для выпрямления?

Применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных, напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Что называется выпрямителем?

Название «выпрямитель» используется прежде всего для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемый в процессе выпрямления.

Что называется однополупериодным выпрямителем?

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рис. 6.2.



Рис. 6.2. Схема одпополупериодного выпрямителя, управляемого синусоидальным напряжением от трансформатора (а) и внешнего источника (б)


Диод включен таким образом, что проводит ток только при положительных полупериодах входного колебания, т. е. когда напряжение на его аноде больше потенциала катода. Среднее значение U колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением U и максимальным значением Um (см. рис. 4.4), равно


Например, при выпрямлении напряжения с действующим значением U = 220 В после выпрямления получаем среднее напряжение U ~= 100 В. В отрицательный полупериод диод не проводит ток и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменении направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные. Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Что называется двухполупериодным выпрямителем?

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак. Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рис. 6.3.



Рис. 6.3. Схема двухполупериодного выпрямителя, управляемого синусоидальным напряжением от трансформатора


В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает. При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученного на выходе двухполупериодного выпрямителя, как легко заметить, в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Что такое выпрямитель на мостовой схеме?

Выпрямитель на мостовой схеме, называемой иногда схемой Гретца, является двухполупериодным выпрямителем с четырьмя диодами, соединенными, как это показано на рис. 6.4.



Рис. 6.4. Двухполупериодная мостовая схема выпрямителя


Когда мгновенная полярность напряжения на вторичной обмотке такая, как это показано на рисунке, то проводит диод Д1, а диод Д2 не проводит. В это же время в другой ветви проводит диод Д3, а диод Д4 не проводит. При этом в один полупериод входного напряжения ток протекает следующим путем: вывод трансформатора, находящийся при отрицательном потенциале («нижний»), диод Д3, нагрузка, диод Д1, вывод трансформатора, находящийся при положительном потенциале («верхний»), В данный момент — это однополупериодный выпрямитель с двумя диодами Д3 и Д1, соединенными последовательно. В следующий полупериод полярность входного напряжения изменяется. Проводят диоды Д2 и Д4 и не проводят Д1 и Д3. Теперь ток течет от верхнего вывода трансформатора через диод Д4, нагрузку и диод Д2 к нижнему выводу трансформатора. Схема также работает как однополупериодный выпрямитель, и ток, текущий, через нагрузку, имеет то же самое направление, что и в предыдущий полупериод. Следовательно, ток течет через нагрузку в течение обоих полупериодов, и в сумме мостиковый выпрямитель работает как двухполупериодный выпрямитель.

Что называется коэффициентом пульсаций выпрямителя?

Коэффициентом пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применении желательно, чтобы коэффициент пульсации был как можно меньше (например, меньше чем 0,002). Уменьшение пульсаций достигается путем применения соответствующих фильтров.

Что называется коэффициентом использования трансформатора в выпрямительной схеме?

Использование трансформатора, работающего в выпрямительной схеме, характеризуется коэффициентом, определенным как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

Что называется коэффициентом полезного действия выпрямителя?

Это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное.

Коэффициент полезного действия (КПД) выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

Что называется частотой пульсаций выпрямителя?

Это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсаций.

Что следует из сравнения основных схем выпрямителей?

Существенным является сравнение с точки зрения технических параметров. При сравнении допустим, что действующее значение напряжения на вторичной обмотке трансформатора, питающего выпрямитель, во всех схемах одинаково и равно U, и его частота составляет 50 Гц. Трансформаторы влияют на напряжение U и тем самым на выпрямленное напряжение. Простыми расчетами можно показать, что параметры отдельных схем такие, как указано в табл. 6.1. Из сопоставления следует, что наиболее выгодным с точки зрения технических параметров является выпрямитель по мостиковой схеме. Однако следует помнить, что в этой схеме применяют четыре диода или другие выпрямительные элементы.


Какую роль играют фильтры, расположенные на выходе выпрямителей?

Задачей фильтра, размещенного на выходе выпрямителя, является уменьшение пульсаций в выпрямленном напряжении. Выходное напряжение выпрямителя представляет собой полусинусоиду, мгновенное значение которой изменяется от нуля до максимального значения. Такое напряжение имеет определенную постоянную составляющую, которая, однако, не подходит для питания транзисторов и ламп из-за наличия «нежелательной» переменной составляющей.

Переменная составляющая в напряжении питания вызывает неустойчивость рабочей точки и проникает в полезный сигнал, проходящий через схемы, питаемые этим «нежелательным» колебанием. Из-за использования фильтра на выходе выпрямителя получают постоянное напряжение с относительно небольшой переменной составляющей, значение которой может быть настолько малым, что его можно использовать для питания транзисторов и ламп, т. е. в качестве напряжения питания. Переменная составляющая в питающем напряжении должна быть во много раз меньше полезного сигнала, проходящего через данную схему. Поэтому при питании выпрямленным напряжением схем, работающих при малых сигналах, необходимо применять фильтры с достаточной эффективностью фильтрации.

Какие типы фильтров используются на выходе выпрямителей?

Это фильтры нижних частот, пропускающие с малым затуханием постоянную составляющую (с частотой, равной 0 Гц) и с большим затуханием переменную составляющую (в случае выпрямителей сетевого напряжения с частотой 50, 100 Гц и более), причем ослабление пульсаций тем больше, чем больше частота переменной составляющей. В однополупериодных сетевых выпрямителях частота основной составляющей пульсаций равна 50, в двухполупериодных — 100 Гц. Из этого следует, что эффективней подавляются пульсации, возникающие на выходе двухполупериодного выпрямителя. Помимо основной частоты в выпрямленном колебании имеется ряд гармонических частот.

Типы фильтров, используемых на выходе выпрямителей, представлены на рис. 6.5–6.10. Они отличаются не только электрической схемой, но и эффективностью фильтрации и влиянием на работу выпрямителя. Используемые на выходе выпрямителей фильтры обычно подразделяют на две группы: с емкостным и индуктивным входами.



Рис. 6.5. Простейшие типы фильтров с емкостным (а) и индуктивным (б) входами



Рис. 6.6. Однополупериодный выпрямитель с простым фильтром, имеющим емкостный вход (а), и форма напряжения на выходе (б):

1 — заряд емкости С; 2 — разряд; 3 — выходное напряжение на конденсаторе; 4 — постоянное напряжение на выходе



Рис. 6.7. Выпрямитель с простым фильтром и индуктивным входом (а) и форма напряжения на выходе (б):

1 — форма выходного напряжения; 2 — постоянная составляющая выходного напряжения



Рис. 6.8. LC-фильтр с индуктивным (а) и емкостным (б) входами



Рис. 6.9. П-образный фильтр



Рас. 6.10. Примеры многозвенных фильтров

Что называется фильтром с емкостным входом?

Фильтром с емкостным входом называется фильтр, на входе которого параллельно схеме выпрямителя включен конденсатор (см. рис. 6.5, а). Существуют несколько вариантов такого фильтра. Рассмотрим сначала простейший фильтр (см. рис. 6.6, а).

Конденсатор фильтра, включенный параллельно как с выпрямителем, так и с нагрузкой, заряжается в то время, когда диод проводит ток. Вторичная обмотка трансформатора, диод и конденсатор образуют цепь зарядки. Постоянная времени зарядки мала, поскольку как сопротивление обмотки, так и сопротивление диода в открытом состоянии малы. Благодаря этому конденсатор очень быстро заряжается до пикового значения напряжения, попадающего на фильтр. Если мгновенное значение напряжения начинает убывать, то конденсатор разряжается через сопротивление нагрузки. Постоянная времени разряда, зависящая при заданной емкости конденсатора в основном от сопротивления нагрузки, относительно велика, поэтому разряд происходит медленно. Напряжение на конденсаторе имеет небольшие изменения, а его среднее значение велико. Это означает, что конденсатор фильтра уменьшает пульсации (сглаживает выходное колебание) и одновременно увеличивает постоянную составляющую по сравнению с постоянной составляющей колебания в отсутствие этого конденсатора. При очень большой постоянной времени разряда, которую получают при большом сопротивлении нагрузки, постоянная составляющая близка к максимальному значению напряжения.

Так же велико влияние фильтрующего конденсатора на обратное напряжение, действующее на выпрямительном диоде во время запирания. В схеме без конденсатора обратное напряжение, например для однополупериодного выпрямителя, равно максимальному входному напряжению. В схеме с фильтром с емкостным входом напряжение на конденсаторе приближенно равно максимальному значению и направлено таким образом, что катод диода смещен положительно. В то же самое время на аноде диода действует отрицательное напряжение, также равное максимальному входному напряжению. Поэтому в схеме с рассматриваемым фильтрующим конденсатором на диоде действует результирующее напряжение, равное двойному максимальному выпрямляемому напряжению. Следует также обратить внимание на тот факт, что во время заряда фильтрующего конденсатора (например, во время включения выпрямителя в сеть) импульс зарядного тока очень велик и будет тем большим, чем больше емкость. Зарядный ток должен обеспечиваться диодом, приспособленным для работы при больших импульсах тока.

Для защиты диода от перегрузки излишне большим током часто последовательно с диодом (особенно в случае полупроводникового диода) включают ограничивающий ток резистор с сопротивлением примерно 100 Ом.

Что называется фильтром с индуктивным входом?

Фильтром с индуктивным входом называется фильтр, на входе которого последовательно с нагрузкой включен дроссель (см. рис. 6.5, б). Рассмотрим фильтр в простейшей схеме, представленной на рис. 6.7. Индуктивность накапливает энергию в виде магнитного поля в периоды, когда ток в цепи нарастает, и отдает энергию в цепь, когда ток исчезает. Таким образом, индуктивность противодействует резким изменениям тока в цепи. Благодаря действию индуктивности фильтра постоянная составляющая выпрямленного колебания увеличивается, а пульсации уменьшаются. Эффективность фильтра тем больше, чем больше индуктивность. Однако увеличение индуктивности приводит к значительному увеличению габаритных размеров дросселя.

Что такое фильтры нижних частот типов RC и LC и каково их применение?

В большинстве применений простые фильтры нижних частот с емкостным или индуктивным входом (см. рис. 6.5) не могут обеспечить достаточно низких пульсаций, поскольку это потребовало бы использования слишком больших конденсаторов (что создает трудности с подбором диодов, выдерживающих большие импульсы зарядного тока) либо больших и дорогостоящих дросселей. При большом значении тока, отбираемого от выпрямителя, применяют схемы фильтров нижних частот типа LC, такие как показано на рис. 6.8.

Объединение действия дросселя и конденсатора в LC-фильтре увеличивает ослабление пульсаций по сравнению с пульсацией в простом фильтре типа L или С. LC-фильтр может иметь две конфигурации: с емкостным или индуктивным входом. LC-фильтр с емкостным входом дает большую постоянную составляющую напряжения из-за зарядки конденсатора до максимального напряжения, однако требует большого тока от выпрямительного элемента при зарядке конденсатора.

Часто применяют составной фильтр с емкостным входом — П-образный фильтр (см. рис. 6.9). В этой схеме емкость конденсатора C1 определяет в основном постоянную составляющую напряжения, в то время как L и С2 образуют фильтр нижних частот, влияющий прежде всего на уменьшение коэффициента пульсаций.

Применяют также многозвенные фильтры (см. рис. 6.10), состоящие из нескольких LC- и П-образных звеньев. При малых токах нагрузки, когда протекающий через сопротивление фильтра ток нагрузки вызывает уменьшение постоянного напряжения на нагрузке и, кроме того, создает потери мощности в резисторе, вместо дросселей используют резисторы.

Какие номиналы элементов L, R и С применяются в фильтрах?

В фильтрах выпрямителей, предназначенных для питания маломощных (до нескольких сотен ватт) транзисторных или ламповых схем и работающих от напряжения сети 220 В, обычно используют емкости от десятков до нескольких сотен микрофарад и более (электролитические конденсаторы), а также индуктивности от единиц до нескольких десятков генри. Сопротивление нагрузки чаще всего составляет от 100 до нескольких тысяч ом. При выборе элементов фильтров обычно пользуются формулами, определяющими зависимость коэффициента пульсаций от номиналов элементов. Например, для однополупериодного выпрямителя с фильтром типа LC (см. рис. 6.9) t = 1,19·L·C, причем L выражается в генри, а С в микрофарадах.

Что такое активный фильтр?

Это фильтр, в котором активный элемент играет существенную роль в процессе подавления переменной составляющей, например путем увеличения фильтрующей емкости. Для этой цели можно использовать как лампы, так и транзисторы. Достоинством фильтра с активными элементами является прежде всего уменьшение габаритных размеров питающих устройств. Широкое применение нашли активные фильтры с транзисторами, в особенности в случаях относительно большого отбора мощности от схемы выпрямителя.

Что такое активный фильтр с транзистором?

Схема простого активного фильтра с транзистором показана на рис. 6.11. Транзистор работает в схеме эмиттерного повторителя. Сопротивление нагрузки включено в цепь эмиттера. Подавление пульсаций осуществляется делителем, образованным большим сопротивлением коллектор — эмиттер (для переменной составляющей) и небольшим входным сопротивлением емкостного характера. Благодаря этому конденсатор С, включенный в цепь базы транзистора, преобразуется в цепь эмиттера емкостью, примерно в К раз большей. Коэффициент К для обсуждаемой схемы и типового транзистора составляет обычно 100. При использовании конденсатора С с емкостью 100 мкФ достигается фильтрующее действие, соответствующее конденсатору с емкостью 10 000 мкФ.



Рис. 6.11 Простая схема активного транзисторного фильтра

Что такое нагрузочная характеристика выпрямителя?

Это график,представляющий зависимость падения постоянного напряжения на сопротивлении нагрузки от тока нагрузки. Значение постоянного напряжения на нагрузке всегда уменьшается при росте тока нагрузки. Это следует из того, что отбираемый от выпрямителя ток протекает как через нагрузку, так и через выпрямительный элемент, всегда обладающий некоторым сопротивлением.

Падение напряжения на этом сопротивлении вычитается из напряжения, существующего на выходе ненагруженного выпрямителя, и тем самым уменьшает падение напряжения на нагрузке.

Что следует из сравнения нагрузочных характеристик выпрямителей?

На рис. 6.12 представлен типичный вид нагрузочной характеристики однополупериодных выпрямителей с подключенным фильтром (с емкостным и индуктивным входом). Изменение тока нагрузки достигалось путем изменения нагрузочного сопротивления. Легко заметить, что большее постоянство выходного напряжения достигается при использовании фильтра с индуктивным входом. Однако недостатком такого фильтра является применение дросселя, который обычно намного дороже электролитического конденсатора. Фильтр с емкостным входом дает спад напряжения при росте нагрузки и одновременно быстрый рост пульсаций, особенно при малых емкостях конденсаторов. Возможность увеличения фильтрующей емкости ограничивается током, отбираемым от выпрямительного элемента во время дозарядки. Значение постоянного напряжения выпрямителя в интервале средних токов нагрузки больше у схемы с фильтром с емкостным входом. П-образный фильтр позволяет получить большие выпрямленные напряжения, чем Г-образный фильтр L-типа, однако изменения этого напряжения при росте тока нагрузки больше, чем при использовании фильтра с индуктивным входом.




Рис 6.12. Типичные нагрузочные характеристики выпрямителей с фильтрами:

а — емкостный; б — индуктивный

Что такое выпрямитель по параллельной схеме?

Это выпрямитель, работающий по схеме, в которой нагрузка включена параллельно выпрямительному элементу (диоду) (рис. 6.13). В такой схеме заряд конденсатора происходит через малое сопротивление диода во время его отпирания, разряд — через сопротивление, соответствующее параллельному соединению сопротивления нагрузки и сопротивления запертого диода.

Достоинством выпрямителя по параллельной схеме является возможность заземления одного из электродов диода и то, что постоянная составляющая выпрямленного напряжения в этой схеме не протекает через источник входного напряжения, а это весьма важно для некоторых применений. Недостатком такого выпрямителя является относительно малое сопротивление схемы со стороны источника, связанное с тем фактом, что к сопротивлению нагрузки выпрямителя параллельно подключается внешнее нагрузочное сопротивление.

Выпрямитель по параллельной схеме часто используют для демодуляции (детектирования) амплитудно-модулированных сигналов в измерительной технике и подачи смещения на управляющие сетки электронных ламп.



Рис. 6.13. Однополупериодный выпрямитель по параллельной схеме

Что такое умножитель напряжения?

Это выпрямительная схема, выходное напряжение которой во много раз больше пикового входного напряжения. Удвоитель напряжения дает двукратное увеличение напряжения, утроитель — трехкратное и т. д. Умножители напряжения используют для питания схем, потребляющих относительно небольшой ток при высоком напряжении, например для питания осциллографических трубок, кинескопов.

Что такое схема удвоителя напряжения?

Схема удвоителя напряжения содержит два выпрямительных элемента и два конденсатора, включенных, как показано на рис. 6.14, а. В такой схеме нагрузка Rн включена параллельно конденсаторам. В момент, когда полярность входного напряжения соответствует показанной на рисунке, диод Д1 отперт и конденсатор С2 заряжается до пикового значения входного напряжения, а затем при изменении полярности очень медленно разряжается. Изменение полярности вызывает отпирание диода Д2 и заряд конденсатора С2. Напряжение на обоих конденсаторах, включенных последовательно, почти в 2 раза больше, чем пиковое значение входного напряжения. Оно полностью действует на сопротивлении нагрузки.

Разряд конденсаторов, а следовательно, и напряжение на нагрузочном сопротивлении зависят от тока, отбираемого нагрузкой, так как он одновременно является и током разряда конденсаторов. При малых сопротивлениях нагрузки напряжение на нагрузочном сопротивлении убывает быстрее. Конденсаторы одновременно действуют как элементы сглаживающего фильтра. Из рассмотренного принципа работы следует, что это схема двухполупериодного удвоителя,




Рис. 6.14. Схемы двухполупериодного (а) и однополупериодного (б) удвоителя напряжения (каскадная схема)


На рис. 6.14, б представлена другая схема удвоителя — каскадная. При такой полярности, как показано на рисунке, происходит заряд конденсатора C1 через диод Д1. При обратной полярности отперт диод Д2. Напряжение, подведенное к этому диоду и к конденсатору С2, представляет собой сумму входного напряжения и напряжения на конденсаторе С1. Следовательно, конденсатор С2 заряжается до двойного пикового значения входного напряжения. Во время разряда С2 конденсатор С1 заряжается. На нагрузке, подключенной параллельно к С2, действует удвоенное напряжение, «пополняемое» каждый второй полупериод. Это однополупериодный удвоитель, пульсации в котором больше, чем в рассмотренном выше двухполупериодном удвоителе.

Что такое схемы многократных умножителей напряжения?

Это схемы, созданные путем каскадного соединения удвоителей. На рис. 6.15 представлена схема утроителя, представляющая схему удвоителя с дополнительно введенными конденсатором С3 и диодом Д3. При отпирании диода Д3 на конденсаторе создается напряжение, равное удвоенному пиковому значению входного напряжения. Напряжение на нагрузке равно сумме напряжений на конденсаторах C1 и С3, т. е. почти утроенному пиковому значению входного напряжения. Подключение дополнительных секций к cxемe, изображенной на рис. 6.15, позволяет получить умножители напряжения в 4, 5 раз и более.



Рис. 6.15. Схема однополупериодного утроителя напряжения

Что такое управляемый выпрямитель и как он работает?

Это выпрямительная схема, допускающая плавную регулировку напряжения и выпрямленного тока. В таких схемах чаще всего используются тиратроны или тиристоры. В маломощных электронных устройствах, требующих чаще всего питания низким напряжением при относительно больших токах, как правило, применяют тиристоры.

На рис. 6.16 представлена простейшая схема выпрямителя на тиристоре.



Рис. 6.16. Схема управляемого выпрямителя с тиристором:

1 — входное напряжение; 2 — ток в нагрузке; 3 — задержка по фазе


Схема работает следующим образом. Ток через нагрузку тиристора протекает только тогда, когда напряжение на аноде тиристора и управляющее напряжение на его затворе имеют соответствующие положительные значения. При подведении к тиристору синусоидального переменного напряжения протекание тока через нагрузку происходит только в течение положительной полуволны (однополупериодное выпрямление). Если затвор управляется синусоидальным напряжением, то время, в течение которого тиристор находится в состоянии пропускания, будет зависеть от фазового сдвига между переменным напряжением на аноде и на затворе. Если этот сдвиг равен нулю, то тиристор проводит в течение времени, соответствующего длительности почти всей положительной полуволны синусоидального напряжения. В этом случае среднее значение тока, протекающего через нагрузку, максимально. Если фазовый сдвиг между напряжениями увеличивается, то время отпирания тиристора уменьшается, поскольку отрезок времени, в течение которого напряжения на аноде и затворе одновременно положительны, сокращается. В связи с этим средний ток, протекающий через нагрузку, уменьшается. Регулировка фазового сдвига между напряжением, управляющим затвором, и входным напряжением, подведенным к тиристору, дает возможность регулировать протекающий через нагрузку ток и, следовательно, напряжение на этой нагрузке. Регулировку фазового сдвига осуществляют путем использования фазосдвигающих цепей типа LR или RC, в которых сопротивление резистора R устанавливается потребителем. В двухполупериодных выпрямительных схемах с регулировкой выходного тока необходимо использовать два тиристора.

Какое применение в выпрямителях находит симметричный тиристор?

Симметричный тиристор не является выпрямительным элементом и находит применение лишь для регулировки переменного тока в нагрузке.

Что такое стабилизирующие схемы?

Стабилизирующие схемы — это схемы, предназначенные для поддержания постоянного выходного напряжения или тока, например от выпрямителя при изменениях напряжения, питающего этот выпрямитель, или изменениях сопротивления нагрузки.

При питании транзисторов задачей стабилизирующих схем часто является поддержание постоянной рабочей точки, несмотря на изменение параметров транзисторов, вызванных, например, влиянием температуры. В некоторых применениях важной проблемой является обеспечение постоянной рабочей точки транзистора даже при замене одного транзистора другим того же типа, несмотря на значительный разброс параметров у отдельных экземпляров. Эту задачу выполняют также соответствующие схемы стабилизации.

На каком принципе работает стабилизатор напряжения?

В простейшем варианте стабилизацию напряжения получают на основе использования полупроводникового стабилитрона или газоразрядного диода с холодным катодом (другие названия — лампа тлеющего разряда, ионная лампа или стабиливольт), т. е. элементов, характеризующихся нелинейной зависимостью между падением напряжения на этом элементе и протекающим через него током. В определенном, относительно большом интервале изменений тока напряжение на элементе меняется незначительно. В более сложных схемах стабилизацию получают, используя транзисторы, иногда с дополнительными каскадами усиления и с использованием обратной связи. Транзистор в качестве стабилизирующего элемента в этих схемах действует как переменное сопротивление, включенное последовательно с нагрузкой или параллельно с ней.

Что такое стабилизатор напряжения с лампой тлеющего разряда?

Схема стабилизатора напряжения с лампой тлеющего разряда представлена на рис. 6.17. Лампа и нагрузка включены параллельно. Последовательно с лампой включен резистор R. Ток нагрузки протекает через нагрузку и резистор R, а ток лампы — через лампу и резистор R, следовательно, падение напряжения на резисторе R определяется суммой тока нагрузки и лампы.



Рис. 6.17. Стабилизатор лампой тлеющего разряда


Стабилизация происходит следующим образом. При мгновенном увеличении тока нагрузки возникает мгновенное увеличение падения напряжения на резисторе R, и в результате этого напряжение на нагрузке и на лампе мгновенно снижается. Это вызывает уменьшение тока лампы, поэтому в итоге протекающей через резистор R ток и падение напряжения на нем изменяются незначительно. При возникновении мгновенного уменьшения тока нагрузки происходит рост тока лампы, противодействующий изменению тока нагрузки.

Стабилизация осуществляется также при изменениях входного напряжения, поскольку рост (или убывание) напряжения вызывает рост (или убывание) протекающего через лампу тока. Например, при использовании лампы тлеющего разряда, предназначенной для работы при напряжении 105 В, и изменениях протекающего через лампу тока в интервале 5—30 мА напряжение на электродах, а следовательно, и на нагрузке, изменяется не более чем на ± 1 В.

Лампы тлеющего разряда (газотроны) выпускают для работы при различных напряжениях (70—150 В). Для стабилизации больших напряжений можно соединить последовательно несколько ламп тлеющего разряда. Следует подчеркнуть, что газотроны в схемах стабилизаторов используются все реже.

Что такое стабилизатор напряжения с полупроводниковым стабилитроном?

Схема стабилизатора напряжения с полупроводниковым стабилитроном представлена на рис. 6.18. Его работа аналогична работе стабилизатора с лампой тлеющего разряда. Изменения тока, протекающего через диод в нормальном диапазоне работы, велики, а напряжение на диоде почти постоянно, поэтому небольшие изменения вызывают большие изменения тока, благодаря чему протекающий через нагрузку ток и падение напряжения на ней остаются почти неизменными.

Полупроводниковые стабилитроны выпускаются в широком ассортименте для работы при различных напряжениях стабилизации, а также для стабилизации малых напряжений, для которых лампы тлеющего разряда не выпускаются.



Рис. 6.18. Стабилизатор напряжения с полупроводниковым стабилитроном

Что такое последовательный стабилизатор с электронной лампой?

Схема последовательного стабилизатора с электронной лампой показана на рис. 6.19. В этой схеме лампа работает как переменное сопротивление, включенное последовательно с нагрузкой. Сопротивление зависит от смещения на сетке, устанавливаемого падением напряжения на резисторе R. При мгновенном изменении напряжения на нагрузке изменяется также падение напряжения на резисторе R, тогда как падение напряжения на ионной лампе, подключенной к сетке лампы, поддерживается На постоянном уровне. Например, увеличение напряжения на сопротивлении R вызывает рост напряжения смещения, а следовательно, и рост сопротивления лампы, что приводит к увеличению падения напряжения на ней. Рост последнего вызывает уменьшение падения напряжения на нагрузке и возврат этого напряжения к его номинальному значению. При мгновенном уменьшении напряжения на нагрузке изменения падений напряжения будут происходить в направлении, противоположном описанному выше, а также вызовут возвращение напряжения на нагрузке до его номинального значения. На том же самом принципе основан процесс стабилизации при изменениях входного напряжения.



Рис. 6.19. Последовательный стабилизатор с электронной лампой и лампой тлеющего разряда (газотрон)

Что такое последовательный стабилизатор с регулировкой напряжения?

Схема подобного стабилизатора представлена на рис. 6.20. Напряжение на выходе регулируют изменением напряжения смещения на сетке лампы с помощью переменного резистора.


Рис. 6.20. Последовательным стабилизатор с регулировкой выходного напряжения

Что такое последовательный стабилизатор на транзисторе?

Схема такого стабилизатора представлена на рис. 6.21, а. Она соответствует схеме с лампой, показанной на рис. 6.19, с той разницей, что лампа тлеющего разряда заменена полупроводниковым стабилитроном, питаемым через резистор R. Разность между напряжениями на нагрузке и базе равна напряжению смещения перехода эмиттер — база. Последовательный стабилизатор на транзисторе с регулировкой напряжения показан на рис. 6.21, б. В нижнем положении движка потенциометра база соединена с массой (землей) и напряжение на нагрузке равно нулю. В верхнем положении движка переход коллектор — база закорачивается, а переход эмиттер — база представляет собой малое сопротивление, включенное последовательно с нагрузкой. При этом напряжение на нагрузке максимально.



Рис. 6.21. Последовательный стабилизатор с транзистором и полупроводниковым стабилитроном (а) и с регулировкой выходного напряжения (б)

Что такое последовательный стабилизатор с дополнительным усилителем?

Задачей дополнительного усилителя в схеме последовательного стабилизатора является усиление мгновенных изменений выходного напряжения, подводимого к сетке регулирующей лампы или к базе транзистора. Благодаря этому достигается значительно большее постоянство выходного напряжения, тем большее, чем больше коэффициент усиления усилителя. Иногда для увеличения усиления применяют дополнительные усилители, например двухкаскадные.

Что такое импульсный стабилизатор?

Импульсный стабилизатор — это схема, в которой элемент, включенный последовательно с нагрузкой (например, транзистор), периодически переключается в состоянии отпирания и запирания. Время отпирания элемента и, следовательно, выходное напряжение на нагрузке, подключенной только во время отпирания, зависят от мгновенного отклонения выходного напряжения от номинального значения. Таким образом достигается стабилизация постоянного выходного напряжения. На выходе такого стабилизатора необходимо применять фильтры, исключающие переменную составляющую, которая возникает в результате работы в прерывистом режиме. Полученное таким способом постоянное напряжение подводится к схеме, питаемой от подобного стабилизатора. Импульсный стабилизатор характеризуется большим КПД и малыми потерями энергии на тепло.

Как термистор применяется в схемах стабилизации?

Термистор является полупроводниковым резистором, сопротивление которого убывает с ростом температуры. На температуру термистора непосредственно влияет температура окружающей среды и косвенно — ток, протекающий через термистор. Чем больше ток, тем больше температура элемента и меньше сопротивление. Это позволяет использовать подобный элемент для стабилизации напряжения на нагрузке при изменениях температуры окружающей среды или выходного напряжения.

В схеме, представленной на рис. 6.22, уменьшение выходного напряжения вызывает уменьшение протекающего через термистор тока и, следовательно, рост его сопротивления. В свою очередь это вызывает рост тока, протекающего через сопротивление нагрузки, что препятствует уменьшению падения напряжения на нагрузке, несмотря на уменьшение выходного напряжения. Тем самым достигается стабилизация напряжения, действующего на нагрузке.



Рис. 6.22. Схема стабилизации напряжения термистором

Где в схемах стабилизации используют варисторы?

Варистор — это нелинейный резистор, сопротивление которого зависит от напряжения. Протекающий через варистор ток в определенном интервале возрастает пропорционально 4—5-й степени подводимого напряжения. Варисторы, в частности, используются для стабилизации напряжения, действующего на нагрузке, при изменениях отбираемого этой нагрузкой тока (рис. 6.23, а) или для стабилизации напряжения на нагрузке при изменениях входного напряжения (рис. 6.23, б). По схеме рис. 6.23, а рост тока нагрузки увеличивает на мгновение падение напряжения на варисторе, в результате чего снижается его сопротивление и напряжение на нагрузке почти не изменяется. По схеме рис. 6.23, б увеличение входного напряжения вызывает рост тока варистора и убывание его сопротивления в такой степени, что выходное напряжение остается почти постоянным.



Рис. 6.23. Схемы стабилизации напряжения с варистором при изменениях:

а — тока нагрузки; б — выходного напряжения

Что такое стабилизатор на магнитном усилителе?

Это стабилизатор переменного напряжения, использующий магнитный усилитель — устройство, состоящее из магнитного сердечника и обмоток переменного и постоянного тока. Стабилизацию выходного напряжения получают благодаря изменению магнитной проницаемости магнитного усилителя.

Что такое ферромагнитные и феррорезонансные стабилизаторы?

Это стабилизаторы переменного напряжения, действующие на принципе использования нелинейной характеристики намагничивания магнитных сердечников с обмоткой. При работе сердечника в режиме насыщения выходное напряжение изменяется в небольших пределах при относительно больших изменениях входного напряжения. В резонансных стабилизаторах используется явление последовательного или параллельного резонанса в цепи с дросселем с сердечником, работающим в области насыщения.

На каком принципе работает стабилизатор тока?

На таком же принципе, что и стабилизатор напряжения. Точно так же регулирующие элементы, применяемые для стабилизации тока, аналогичны тем, которые применяются для стабилизации напряжения. Другой является только схема взаимосоединений между нагрузкой и регулирующим элементом. Стабилизаторы тока в электронике применяются значительно реже, чем стабилизаторы напряжения, и чаще всего для измерения и в специальных целях. Их задачей является поддержание на постоянном уровне тока, протекающего через нагрузку, при изменениях входного напряжения и сопротивления нагрузки.

Какая схема у стабилизатора тока?

Схема стабилизатора тока с транзистором и полупроводниковым стабилитроном показана на рис. 6.24. При росте входного напряжения или уменьшений сопротивления нагрузки ток, протекающий через нагрузку, остается почти постоянным. Это следует из того факта, что напряжение база — коллектор транзистора поддерживается на постоянном уровне, в то же время изменяется напряжение между коллектором и эмиттером. При увеличении входного напряжения или уменьшении сопротивления нагрузки напряжение между коллектором и эмиттером возрастает настолько, что ток эмиттера и ток, протекающий через нагрузку, остаются практически постоянными. Рассматриваемый стабилизатор представляет собой для нагрузки источник тока.



Рис. 6.24. Схема стабилизации выходного тока на транзисторе и полупроводниковом стабилитрона

Какие методы защиты применяются в схемах питания?

Применяются различные методы защиты. Широкое применение находят плавкие предохранители, прерывающие протекание тока в схеме питания при длительной перегрузке или замыкании (повреждении) в цепи нагрузки. Часто используются инерционные предохранители, иначе называемые предохранителями с замедленным временем срабатывания. Они не вызывают перерыва в протекании тока в нагрузку во время коротких перегрузок, возникающих, например, в момент включения.

Применяются также схемы, автоматически ограничивающие отбираемый от схемы питания ток и не допускающие тем самым возникновения токовых перегрузок. Такие решения особенно пригодны при питании транзисторных схем и интегральных микросхем, которые на перегрузки реагируют быстрее, чем предохранители. Ограничение отбираемого транзисторными схемами тока защищает транзисторы от выхода из строя. Защитные схемы подобного типа иногда состоят из нескольких транзисторов.

Разработаны схемы, защищающие от появления перенапряжении в питающем напряжении, которые вызываются, например, искрением. Искрения особенно опасны для интегральных микросхем.

На чем основан процесс, обратный выпрямлению переменного напряжения?

Обратный процесс должен состоять в преобразовании постоянного напряжения в переменное. Подобная необходимость может возникать тогда, когда имеется источник в виде аккумулятора, а для питания устройства требуется переменное напряжение (электродвигатель переменного тока, устройство с сетевым трансформатором). Часто в том случае, когда необходимо увеличить постоянное напряжение, его сначала преобразуют в переменные колебания, затем с помощью трансформатора повышают, а потом выпрямляют.

Устройства, которые служат для преобразования постоянных напряжений и токов в переменные колебания, называются преобразователями постоянного тока. Существует несколько методов преобразования постоянного тока в переменный. Часто используются вибропреобразователи. Они состоят из колеблющегося прерывателя тока, который приводится в движение электромагнитом. Чаще применяются транзисторные преобразователи вибрационного типа, в которых не возникают механические колебания и связанное с этим искрение контактов. В этих преобразователях постоянный ток запускает генератор переменных колебаний. Напряжение генератора может быть повышено с помощью трансформатора. Часто транзисторный преобразователь применяется для преобразования постоянного тока одного значения в постоянный ток другого. При этом полученное с генератора-преобразователя переменное напряжение после повышения в трансформаторе подвергается выпрямлению.

Глава 7 НЕРЕЗОНАНСНЫЕ УСИЛИТЕЛИ

Что такое усилитель?

Усилитель — это устройство, предназначенное для увеличения уровня электрического сигнала за счет энергии источника питания.

Как классифицируются усилители?

Классификацию усилителей можно проводить исходя из различных критериев. Сточки зрения усиливаемого электрического параметра (напряжение, ток, мощность) различают усилители напряжения, тока и мощности. В зависимости от диапазона усиливаемых частот они подразделяются на усилители постоянного тока (медленных электрических колебаний), низкой (звуковой) и высокой частот. Последние могут быть выполнены как широкополосные или нерезонансные усилители, предназначенные для усиления определенной полосы частот.

Существует много других методов деления усилителей на группы, которые, однако, в процессе их систематизации имеют меньшее значение. Различают, например, транзисторные и ламповые усилители классов А, В, С, у которых принадлежность к данному классу определяется положением рабочей точки на характеристике управления активного элемента; усилители, название которых зависит от их применения, а именно антенные усилители, видеоусилители и т. п.

Что такое нерезонансные усилители?

Нерезонансные усилители не содержат элементов, подлежащих подстройке. Это в основном усилители различного назначения. Их общей чертой является усиление сигналов с широкой полосой частот от постоянного тока или очень низких частот до частот 10–20 кГц или даже нескольких десятков мегагерц. Ясно, что нерезонансные усилители могут относиться к любой из ранее упомянутых групп, например, может быть усилитель звуковых частот, класса А, транзисторный.

Какую принципиальную схему имеет однокаскадный усилитель и каковы его основные параметры?

Однокаскадным называется усилитель, содержащий одни активный элемент: лампу, биполярный или полевой транзистор. На рис. 7.1 представлена принципиальная схема подобного усилителя. Помимо активного элемента, символически обозначенного прямоугольником, она содержит входную цепь с источником управляющего напряжения или тока, а также выходную цепь с сопротивлением нагрузки Zн.



Рис. 7.1. Схема однокаскадного усилителя


Основными параметрами, характеризующими схему, являются коэффициент усиления, входное и выходное сопротивление. В зависимости от рассматриваемой электрической величины различают коэффициенты усиления по напряжению, току и мощности.

Коэффициент усиления по напряжению — это отношение выходного напряжения к входному

Ku = uвых/uвх

Аналогично коэффициент усиления по току определяется отношением выходного тока к входному

Ki = iвых/iвх

Произведение этих величин дает коэффициент усиления по мощности, являющийся частным от деления выходной мощности на входную мощность.

Kp = Pвых/Pвх = uвых·iвых/uвх·iвх =Ku·Ki

Следует подчеркнуть, что полученная на выходе усилителя мощность всегда больше мощности, подведенной к входу усилителя.

Входное сопротивление равно отношению входного напряжения к входному току

Zвх = uвх/iвх

а выходное сопротивление — отношение выходного напряжения выходному току

Zвых = uвых/iвых

Значения всех указанных параметров зависят от вида используемого активного элемента (лампа, транзистор) нагрузки, а также схемы включения (схема ОЭ, ОБ или ОК). Чаще всего эти параметры являются функциями параметров активного элемента и сопротивления нагрузки.

Что такое частотная характеристика усилителя?

Это характеристика, изображающая зависимость коэффициента усиления от частоты входного синусоидального сигнала. В большинстве усилителей сигналы малы, причем высокие частоты усиливаются не так, как сигналы средних частот. Поскольку коэффициент усиления является комплексным, то изменению, по сравнению с входным сигналом, подвергаются как амплитуда, так и фаза выходного сигнала. Поэтому различают две частотные характеристики: амплитудно-частотную и фазочастотную характеристику, кратко называемые также амплитудной и фазовой характеристиками. Примеры подобных характеристик представлены на рис. 7.2.




Рис. 7.2. Амплитудная (а) и фазовая (б) характеристики усилителя переменного тока низкой частоты


При построении частотных характеристик по оси абсцисс откладывают частоту f или угловую частоту ω, а по оси ординат для амплитудных характеристик откладывают численные значения коэффициента усиления, а для фазовых — фазовый угол в градусах или радианах. Удобнее воспользоваться логарифмической шкалой. Тогда по шкале абсцисс откладывают не частоту, а ее десятичный логарифм (lg f), а по оси ординат — коэффициент усиления, выраженный в децибелах. Амплитудная и фазовая характеристики определяют способность усилителя пропускать сигнал с определенным частотным спектром.

Для усилителя звуковых частот представляет интерес амплитудная характеристика; а фазовая не играет существенной роли, поскольку человеческое ухо не реагирует на небольшие фазовые сдвиги звуковых сигналов. Иначе обстоит дело для видеоусилителя. Фазовая характеристика имеет такое же значение, как и амплитудная, поскольку человеческий глаз реагирует на малые фазовые сдвиги отдельных составляющих сигнала изображения.

Что такое ширина полосы пропускания усилителя?

Из-за того что усилитель не усиливает одинаково сигналы различных частот, возникает необходимость уточнения способности усилителя усиливать определенные полосы частот. Эта способность выражается с помощью ширины полосы, определяемой как разность частот между двумя точками амплитудной характеристики, для которых коэффициент усиления на 3 дБ меньше, чем на средних частотах. Одна из этих точек, расположенная в этой части характеристики отражает в диапазоне более низких частот, соответствует на оси частот нижней граничной частоте fн (рис. 7.3), тогда как другая точка — соответственно верхней граничной частоте fв. Разность этих частот и является шириной полосы пропускания, которую обычно обозначают буквой В или Δf:

ΔfВfвfн



Рис. 7.3. Амплитудная характеристика низкочастотного усилителя с граничными частотами fн и fв


Точки на амплитудной характеристике, в которых усиление (по напряжению и по току) снижается на 3 дБ, называются точками половинной мощности, поскольку соответствующая им мощность уменьшается в 2 раза.

В зависимости от применения усилители могут иметь различную ширину полосы пропускания. Полоса пропускания усилителей звуковых частот, используемых, например, в радиоприемниках и электроакустических устройствах, лежит в полосе от нескольких десятков герц до 10–20 кГц, тогда как в видеоусилителях, предназначенных для усиления сигналов изображения с широким частотным спектром, — от нескольких герц до нескольких мегагерц (например, 6 МГц).

Оба упомянутых усилителя относятся к усилителям типа фильтров нижних частот, поскольку пропускают сигналы с очень низкими частотами. Именно поэтому в подобных усилителях за ширину полосы пропускания принимают значение верхней граничной частоты fв, поскольку разность верхней и нижней граничных частот fвfн незначительно меньше частоты fв.

Что понимается под терминами: диапазоны низких, средних и высоких частот усилителя?

При анализе изменения коэффициента усиления усилителя в функции частоты удобно разделить весь диапазон частот, пропускаемых усилителем, на три поддиапазона: низких, средних и высоких частот. Диапазон низких частот простирается от нуля до частоты, в 10 раз большей нижней граничной частоты fн. В этом диапазоне амплитудная характеристика обычно спадает при уменьшении частоты.

Аналогично диапазон высоких частот охватывает область от частот, в 10 раз меньшей верхней граничной частоты вплоть, до fв. В этом диапазоне амплитудная характеристика также спадает, но при увеличении частоты. Между указанными диапазонами располагается диапазон средних частот, в котором амплитудная характеристика плоская. Следует подчеркнуть, что термин «диапазон высоких частот» означает частоты, большие по сравнению со средними частотами. В действительности, например в случае усилителей звуковых частот, эти частоты могут быть малыми, около нескольких килогерц.

Что такое искажения, вносимые усилителем?

Искажением называется изменение формы сигнала после прохождения этого сигнала через усилитель. Если форма выходного сигнала отличается от формы входного, то говорят, что усилитель вносит искажения. Очевидно, что изменение значения амплитуды но является искажением. Различают два основных вида искажений — линейные и нелинейные.

Что такое амплитудные линейные искажения усилителя?

Усилитель вносит в сигнал линейные амплитудные искажения в том случае, если ширина его полосы пропускания оказывается недостаточной по отношению к частотному спектру усиливаемого сигнала. Электрические сигналы могут иметь различную форму синусоидальную, прямоугольную, трехугольную, пилообразную и т. п.

Каждый из этих сигналов можно представить как сумму синусоидальных сигналов: сигнала основной частоты f и гармонических сигналов, частоты которых являются кратными основной частоте, т. е. равны 2f, 3f и т. д. Для правильного представления (воспроизведения) сигнала сложной формы обычно достаточно десяти гармоник сигнала основной частоты. Например, если усиливается прямоугольный сигнал с частотой 15 кГц, то ширина полосы пропускания усилителя должна составлять 150 кГц. В этом случае на выходе усилителя также получим прямоугольный сигнал. Если бы полоса пропускания усилителя составляла 15 кГц, на выходе вместо прямоугольного колебания мы бы получили синусоидальное колебание с частотой 15 кГц (рис. 7.4).

Высшие гармонические составляющие сигнала усилителем не были бы пропущены. При более широкой полосе усилителя, например 50 кГц, выходной сигнал был бы уже более похож на прямоугольный сигнал, и лишь при полосе усилителя, соответствующей спектру сигнала, наблюдается воспроизведение на выходе входного сигнала. Следовательно, линейные амплитудные искажения наблюдаются в том случае, когда коэффициент усиления усилителя не является постоянным в достаточно широком диапазоне частот.



Рис. 7.4. Электрические колебания на входе и выходе усилителя:

а — входное прямоугольное колебание с частотой 15 кГц, б и в — колебания на выходе усилителя с шириной полосы соответственно 15 и 150 кГц

Что такое линейные фазовые искажения усилителя?

К линейным искажениям относятся также фазовые искажения, которые наблюдаются в том случае, когда фазы сигналов различных частот, образующих сложный (составной) сигнал, например прямоугольной формы, оказываются сдвинутыми на разное значение. Поскольку прямоугольный сигнал является суммой синусоидальных сигналов с определенными фазовыми сдвигами, то нарушение фазовых соотношений этих сигналов на выходе усилителя не позволит вновь получить прямоугольный сигнал. Можно доказать, что только усилитель с линейной фазовой характеристикой не вносит фазовых искажений.

Что такое динамическая характеристика усилителя?

Динамическая характеристика усилителя — это график, представляющий собой зависимость выходного напряжения (тока) усилителя от входного напряжения (тока) (рис. 7.5). При правильно выбранной рабочей точке усилителя (на линейном участке его рабочей характеристики) выходное напряжение является линейной функцией входного напряжения. В связи с этим динамическая характеристика проходит вдоль прямой линии, наклоненной под некоторым углом к оси Uвх. При увеличении входного напряжения свыше определенного значения в результате нелинейности характеристик ламп или транзисторов динамическая характеристика изгибается и становится горизонтальной линией, параллельной оси Uвх.



Рис. 7.5. Динамическая характеристика усилителя


В усилительных устройствах нас интересует только линейный участок динамической характеристики. Чем он больше, т. е. чем больший диапазон входных напряжений он охватывает, тем больше динамический диапазон усиления. Если выходное напряжение перестает линейно зависеть от входного, то возникают искажения, а об усилителе говорят, что он работает в режиме насыщения.

Что такое нелинейные искажения?

Нелинейные искажения связаны с нелинейностью динамической характеристики усилительной схемы. Если поданый на вход усилителя сигнал имеет слишком большую амплитуду, превышающую линейный диапазон возбуждения усилителя, возникают искажения вершин усиливаемого сигнала. В качестве примера рассмотрим сеточную характеристику лампы, работающей в схеме усилителя (рис. 7.6).



Рис. 7.6. Возникновение нелинейных искажений в усилителе


Рабочая точка лампы находится на середине линейного участка характеристики. Синусоидальный входной сигнал, амплитуда которого не выходит за линейный участок характеристики, вызывает протекание синусоидального тока через лампу и в результате — появление синусоидального напряжения на сопротивлении нагрузки. Если амплитуда возбуждающего (входного) сигнала увеличивается так, что максимальные значения сигнала превышают напряжение, соответствующее верхнему загибу характеристики, и напряжение отсечки, то на выходе появится колебание со срезанными вершинами сигнала. Такого вида сигнал может быть представлен как сумма синусоидального сигнала основной частоты и множества сигналов, частоты которых кратны основной частоте (гармоникам). Поскольку гармоники во входном сигнале отсутствовали, то они возникли в усилителе. Их присутствие в выходном сигнале поясняет другое название нелинейных искажений — искажения из-за гармоник.

Что такое каскадное соединение усилителей?

Каскадным соединением усилителей называется группа ступеней усилителя, в которой сигнал, полученный на выходе первой ступени усиления, возбуждает вторую. В свою очередь сигнал, полученный на ее выходе, возбуждает третью ступень и т. д. вдоль всей цепочки.

Основной чертой усилителя, состоящего из нескольких каскадов, является большее усиление, чем у одиночного. Полный коэффициент усиления усилителя равен произведению коэффициентов усиления отдельных каскадов или равен их сумме, если усиление каждого каскада выражено в децибелах. Однако каскадное соединение усилителей приводит к уменьшению общей полосы пропускания.

В качестве примера рассмотрим два одинаковых усилительных каскада с определенной верхней граничной частотой fв. Этой частоте соответствует на 3 дБ меньшее усиление, чем на средних частотах. Падение усиления каскадного соединения двух ступеней при граничной частоте каждой из ступеней будет равно уже 6 дБ, т. е. новая граничная частота будет ниже. В связи с этой особенностью каскадного соединения ширина полосы каждого усилительного каскада должна быть большей, чтобы общая ширина полосы имела заданное значение.

В общем случае в каскадном соединении отдельных усилителей можно выделить входной каскад с низким уровнем сигнала, непосредственно взаимодействующего с источником возбуждения, средние и выходной каскады, взаимодействующие с нагрузкой, уровень сигнала в которых является наибольшим. В связи с этим требования к отдельным каскадам различны. Вовходном существенную роль может играть входное сопротивление и шумовые свойства. В средних каскадах основное значение имеют коэффициент усиления и частотная характеристика. Наконец, для выходного важны вид выхода (симметричный или несимметричный), выходное сопротивление и уровень нелинейных искажений.

Что такое межкаскадная связь?

Это способ соединения отдельных каскадов для передачи выходного сигнала одного каскада в другой. Непосредственная связь коллектора одного каскада с базой второго не применяется, поскольку коллектор и база транзистора требуют подачи постоянных напряжений с сильно отличающимися значениями. Поэтому непосредственную связь используют исключительно в усилителях, предназначенных для усиления очень низких частот. Наиболее часто применяемыми способами связи являются емкостная и трансформаторная.

Что такое резистивный усилитель с емкостной связью?

Резистивный усилитель с емкостной связью, называемый также RС-усилителем, — основная схема. На рис. 7.7 представлена его принципиальная схема на транзисторе. Название схемы связано с характером сопротивления нагрузки (сопротивление Rк) и емкостной связью обсуждаемого каскада с источником сигнала либо предыдущим каскадом и нагрузкой следующего каскада (конденсаторы С1 и С2). Транзистор работает по схеме с ОЭ. Эту схему наиболее часто используют, поскольку она дает большой коэффициент усиления по напряжению и току, а следовательно, и большое усиление по мощности.

Рабочую точку транзистора определяют резисторы R1, R2, Rэ, Rк, причем делитель R1R2 определяет напряжение смещения базы, а падение напряжения, возникающее в результате протекания тока эмиттера через резистор Rэ, — напряжение эмиттера. При заданном напряжении коллектора, равном разности между напряжением питания и падениями напряжений на резисторах Rк и Rэ, устанавливается определенный ток базы.

Параметры элементов, определяющие положение рабочей точки на рабочей характеристике транзистора, обычно подобраны таким образом, чтобы рабочая точка находилась на прямолинейном участке характеристики. Это означает, что при достаточно малых возбуждающих сигналах усилитель работает в классе А и может рассматриваться как линейная схема. Резистор Rэ выполняет, кроме того, функции резистора, стабилизирующего рабочую точку транзистора. Для исключения отрицательной обратной связи по переменному току этот резистор обычно шунтируется конденсатором Сэ большой емкости.

В представленной на рис. 7.7 схеме резистор Rвх2 символизирует входное сопротивление следующего каскада, которое является параллельным соединением резисторов в цепи базы и входного сопротивления транзистора следующего каскада.



Рис. 7.7. Резистивный усилитель с емкостной связью


В диапазоне средних частот, в котором влиянием действующих в схеме емкостей можно пренебречь, усиление схемы по напряжению выражается следующей формулой:


в которой h21э — коэффициент передачи по току при коротком замыкании в схеме с ОЭ при малом сигнале; h11э — входное сопротивление при коротком замыкании в схеме ОЭ при малом сигнале; Rвых — сопротивление, полученное при параллельном соединении резисторов Rк и Rвх2. Знак минус в формуле означает, что фаза выходного напряжения повернута на 180 относительно входного напряжения. Сопротивление Rвых не зависит от выходного сопротивления транзистора. Действительно, выходное сопротивление транзистора в схеме с ОЭ велико, и в связи с этим им можно пренебречь.

В противоположность выходному сопротивлению входное сопротивление транзистора мало и поэтому оказывает существенное влияние на Rвых в схеме, нагрузкой которой является следующий каскад усиления. Входное сопротивление транзистора в схеме с ОЭ примерно равно h11э. Входное сопротивление транзисторного каскада также снижается из-за шунтирующего влияния параллельного соединения резисторов цепи смещения базы.

От чего зависит верхняя граничная частота в резистивном усилителе с емкостной связью?

При заданном сопротивлении нагрузки усилительного каскада верхняя граничная частота резистивного усилителя зависит от емкости шунтирующей это сопротивление. На рис. 7.7 эта емкость не приведена, поскольку она не оказывает влияния на усиление в диапазоне средних частот, так же как и емкости связи и емкость, включенная параллельно резистору в цепи эмиттера. Цепь, на которую нагружен каскад усиления в диапазоне высоких частот, представлена на рис. 7.8, а. Помимо емкостей, указанных на рис. 7.7, имеются дополнительно выходная емкость транзистора Свых, входная емкость следующего каскада Свх, а также емкость рассеяния Сm, которую образуют собственные емкости компонентов и соединительных проводов. Пренебрегая реактивным сопротивлением конденсатора Сс2, которое в диапазоне высоких частот мало, можем представить нагрузку усилителя в виде сопротивления R с подключенной параллельно ему емкостью С0. Переменный ток транзистора i протекает через обе ветви цепи. В диапазоне средних частот, где реактивное сопротивление конденсатора С0 велико, практически весь ток протекает через сопротивление Rэкв. Поскольку падение напряжения на сопротивлении Rэкв является выходным напряжением, то в диапазоне средних частот оно имеет максимальное значение.



Рис. 7.8. Эквивалентная схема (а) и диаграмма токов (б) на частоте fh11  RC-усилителя


Реактивное сопротивление конденсатора С0 обратно пропорционально частоте. При некоторой частоте оно становится равным сопротивлению Rэкв. В этом случае полный ток делится на две части, равные 0,707 значения тока транзистора i, что следует из векторной диаграммы, приведенной на рис. 7.8, б. В соответствии с законом Ома падение напряжения на сопротивлении Rэкв меняется таким же образом. Спад до 0,707 означает спад на 3 дБ относительно значения, действующего в диапазоне средних частот. Поэтому частота, на которой Xс0 = Rэкв. является граничной частотой fв. Эту частоту можно определить, приравняв друг другу Xс0 и Rэкв и решив полученное уравнение относительно fв:

fв = 1/2πRэквС0

Из анализа этого уравнения следует, что при заданной емкости С0 увеличение верхней граничной частоты, а следовательно, расширение полосы усилителя возможно лишь за счет уменьшения сопротивления нагрузки Rэкв. Выше частоты fв реактивное сопротивление Xс0 меньше сопротивления Rэкв и поэтому амплитудная характеристика имеет резкий спад.

Коэффициент усиления резистивного усилителя с емкостной связью в диапазоне высоких частот можно рассчитать по следующей формуле:


где Кu — коэффициент усиления усилителя в диапазоне средних частот; f — частота, для которой определяют усиление. Видно, что при f = fв К'u = 0,707·Кu.

Емкость, шунтирующая резистор нагрузки, оказывает также влияние на фазовый сдвиг между выходным и входным напряжениями. Угол фазового сдвига убывает с ростом частоты и при частоте fв составляет 135°, т. е. на 45° меньше угла в диапазоне средних частот.

Эти рассуждения относятся к усилителям с относительно малыми верхними граничными частотами. Для усилителей с очень большой шириной полосы пропускания, в которых сопротивление Rэкв имеет малое значение, усиление в диапазоне высоких частот в большей степени зависит от изменений коэффициента h21б транзистора с частотой, чем от емкости С0.

От чего зависит нижняя граничная частота в резистивном усилителе с емкостной связью?

Нижняя граничная частота зависит от постоянных времени цепи эмиттера и цепи связи. Постоянной времени (поскольку она имеет размерность «секунда») называется произведение сопротивления резистора и емкости конденсатора. Влияние постоянной времени RэCэ сказывается в росте сопротивления в цепи эмиттера при уменьшении частоты. При этом возникает отрицательная обратная связь, приводящая к снижению коэффициента усиления. Если емкость конденсатора Сэ велика (около 100 мкФ), то нижняя граничная частота зависит главным образом от постоянной времени цепи связи.

Цепь, на которую нагружен усилитель в диапазоне низких частот, представлена на рис. 7.9.



Рис. 7.9. Нагрузка RС-усилителя в диапазоне низких частот


Из-за малого входного сопротивления последующего транзисторного каскада Rвх при рассмотрении цепи связи следует принимать во внимание также сопротивление Rк. Одновременно с уменьшением частоты возрастает сопротивление ветви, состоящей из последовательно соединенных конденсатора Сс2 и резистора Rвх, и большая часть тока начинает протекать через сопротивление коллектора Rк. На основе такой же векторной диаграммы, как для диапазона высоких частот, можно показать, что нижняя граничная частота, при которой усиление снижается на 3 дБ, выражается формулой


Из анализа этой формулы следует, что при заданных сопротивлениях Rк и Rвх нижнюю граничную частоту можно уменьшать лишь путем увеличения емкости связи Сс2. На практике емкость связи Сс2 составляет обычно несколько десятков микрофарад.

Усиление резистивного усилителя с емкостной связью в диапазоне низких частот можно рассчитать по следующей формуле:


где Кu — коэффициент усиления усилителя в диапазоне средних частот; f — частота, для которой рассчитывается усиление.

Видно, что при f = fн К'u = 0,707·Кu. Конденсатор связи Сс2 вносит в схему некоторый фазовый сдвиг между выходным и входным напряжениями. Этот сдвиг увеличивается, если частота снижается, и при частоте fн составляет 225°, т. е. на 45° больше, чем сдвиг в диапазоне средних частот.

Как работает ламповый резистивный усилитель и какова его схема?

Наиболее простые схемы такого усилителя на триодах и пентодах показаны на рис. 7.10.




Рис. 7.10. Триодный (а) и пентодный (б) резистивные усилители с емкостной связью


Напряжение питания около 200 В подводится между точками, обозначенными Еа, и массой схемы. Анодный ток протекает через лампы, а также резисторы Rк и Rа. Падение напряжения на резисторах Rк обеспечивает соответствующие отрицательные сеточные напряжения, т. е. задает рабочие точки на сеточных характеристиках. Конденсаторы Ск, включенные параллельно резисторам Rк, имеют малое сопротивление для переменных напряжений, благодаря чему сеточные напряжения остаются постоянными. Резисторы Rc — это сопротивления утечки. Они образуют цепь, по которой электроны, перехваченные управляющей сеткой лампы, могут быть отведены на катод. При отсутствии такого пути утечки накопленные на сетке электроны вызвали бы возникновение на сетке отрицательного напряжения, существенно нарушающего работу усилителя. Обычно сопротивление резистора Rc не превышает 1 МОм.

В случае усилителя на пентоде для обеспечения правильной работы лампы необходимо соединить третью сетку лампы с катодом или массой, я также вторую сетку (экранную) — с источником напряжения питания Еа. Если требуемое напряжение питания второй сетки меньше, чем напряжение Еа, то ее соединяют с источником напряжения Еа через гасящий резистор Rэ. Экранная сетка в пентоде действует аналогично аноду, поэтому при работе лампы в качестве усилителя напряжение между экранной сеткой и массой изменяется.

Чтобы воспрепятствовать этим нежелательным изменениям, между экранной сеткой и массой включают конденсатор большой емкости. Он представляет собой короткое замыкание для переменных токов, и благодаря этому потенциал экранной сетки поддерживается на постоянном уровне.

Если на вход схемы подать переменное напряжение, то оно наложится на постоянное сеточное напряжение и вызовет изменение потенциала между сеткой и катодом. В результате изменений этого потенциала изменятся анодный ток и падение напряжения на нагрузочном сопротивлении Ra. Следует добавить, что выходное напряжение имеет полярность обратную полярности выходного, что для импульсных сигналов означает инверсию (поворот) фазы на 180°. Незначительное изменение напряжения в цепи сетки может вызвать изменение анодного тока на несколько миллиампер. При большом сопротивлении резистора Ra на нем возникает падение напряжения, во много раз превышающее входное напряжение. Поэтому схема работает как усилитель напряжения.

Коэффициент усиления схемы в диапазоне средних частот выражается следующей формулой:

Кu = — S·Ra,экв

где S — крутизна сеточной характеристики лампы; Ra,экв — сопротивление нагрузки лампы.

В пентодном усилителе из-за большого внутреннего сопротивления Ri пентода нагрузка представляет собой параллельное сопротивление резисторов Ra и RC2; в триодном усилителе необходимо еще учитывать включенное параллельное сопротивление Ri.

Конденсаторы Сс1 и Сс2 являются конденсаторами связи, которые выполняют те же задачи, что и конденсаторы связи в транзисторном усилителе. Однако емкости конденсаторов из-за высокого сопротивления сеточной цепи значительно меньше и не превышают обычно 0,5 мкФ. Конденсаторы связи, блокирующие катодные резисторы, оказывают влияние на ход кривой усиления в диапазоне низких частот, тогда как входные и выходные емкости ламп, а также емкости соединительных проводников ограничивают полосу усилителя со стороны высоких частот.

Что такое произведение коэффициента усиления на ширину полосы пропускания?

Произведение коэффициента усиления на ширину полосы GB[20], называемое также площадью усиления, является параметром, определяющим способность активного элемента усиливать в широкой полосе частот. Из формулы для верхней граничной частоты, которая определяет ширину полосы, следует, что эта частота тем больше, чем меньше сопротивление Rэкв, являющееся нагрузкой усилителя. Однако, с другой стороны, меньшему сопротивлению соответствует меньшее усиление, и поэтому требование большой ширины полосы противоречит возможности получения большого коэффициента усиления усилителя. Оказывается, например, что для пентода произведение GB имеет постоянное значение и выражается следующей зависимостью:

B = S/2πСполн

где S — крутизна сеточной характеристики пентода; Сполн — сумма емкостей, шунтирующих сопротивление нагрузки усилительного каскада.

Если S = 10 мА/В и С = 20 пФ, то GB = 80 МГц. Это означает, что при ширине полосы В = 10 МГц усиление G = 8, т. е. наблюдается «обмен» между усилением и полосой при сохранении постоянства их произведения. Проблема «обмена» усиления и полосы не очень существенна в усилителях низкой частоты, поскольку площадь усиления обычно больше требуемой. Эта проблема становится существенной и в широкополосных усилителях, в которых площадь усиления является решающим фактором, ограничивающим коэффициент усиления схемы. В триодном усилителе произведение коэффициента усиления на ширину полосы пропускания не является постоянным. Это следует из того факта, что емкость возрастает при росте коэффициента усиления (эффект Миллера) и уменьшении ширины полосы. При больших усилениях и малых полосах площадь усиления меньше, чем в противоположном случае.

В транзисторных усилителях произведение GB также не является постоянным и достигает максимального значения при оптимальных сопротивлении резистора, шунтирующего входную цепь транзистора, коэффициенте усиления и ширине полосы. Кроме того, для получения большой площади усиления транзистор должен работать при достаточно больших токах эмиттера.

Если речь идет о полевом транзисторе, то его свойства в известной степени схожи со свойствами электронной лампы. В связи с этим произведение GB усилительного каскада на полевом транзисторе должно быть постоянным. Однако из-за значительной емкости между стоком и затвором произведение GB характеризуется такими же свойствами, как произведение GB триода.

Что такое широкополосный усилитель?

Широкополосный усилитель — это усилитель, используемый для усиления сигналов с широким спектром частот, часто сравнимым с площадью усиления применяемых активных элементов, ламп или транзисторов. Примером такого сигнала может быть сигнал изображения, действующий в телевизионных схемах, спектр которого охватывает частоты от нескольких герц примерно до 6 МГц, или последовательность коротких импульсов с малым временем фронта.

Основные схемы однокаскадного широкополосного усилителя не отличаются от представленных на рис. 7.7 и 7.10. Разница заключается в использовании меньших сопротивлений нагрузки и подборе соответствующих усилительных элементов. Для ламповой схемы применяют пентоды с большим отношением крутизны к параллельной емкости (S/С), а для транзисторной — транзисторы, характеризующиеся большим значением граничной частоты fгр.

Что такое временная характеристика усилителя?

Временной характеристикой усилителя называется отклик усилителя на заданный эталонный входной импульс. За эталонный импульс чаще всего принимают единичный скачок или скачок напряжения от 0 до 1 за бесконечно малый промежуток времени. На практике это импульс с очень коротким временем нарастания и соответственно большой длительностью.

Если бы усиление усилителя не зависело от частоты, то выходной импульс имел бы ту же форму, что и входной. Однако, поскольку каждый усилитель, даже широкополосный, имеет ограниченную полосу пропускания, следует ожидать, что входной импульс не будет идеально воспроизведен на выходе усилителя, а отклик усилителя будет зависеть от свойств схемы. Математический анализ усилителя позволяет утверждать, что форма начальной части (фронта) выходного импульса зависит от свойств усилителя в диапазоне высоких частот, тогда как форма средней части выходного импульса (вершины) зависит от свойств усилителя в диапазоне низких частот. С точки зрения измерений широкополосных усилителей временная характеристика является полезным мерилом качества усилителя, поскольку сразу же демонстрирует вносимые усилителем искажения.

На рис. 7.1 показаны отклики усилителя на единичный скачок, единичные отклики в области фронта и вершины. Единичный отклик в области фронта может быть колебательным или монотонным.




Рис. 7.11. Формы фронта (а) и вершины (б) на выходе усилителя при единичном скачке на входе:

1 — колебательная форма фронта; 2 — монотонная


Для полного определения искажений фронта служат три параметра; время нарастания τн, определяемое как время нарастания отклика от 0,1 до 0,9 в установившемся состоянии; время задержки τз определяемое как время нарастания отклика от 0 до 0,5 в установившемся состоянии; амплитуда первого колебания (выброса) l.

Естественно, что последний параметр не относится к непрерывно нарастающему (монотонному) отклику.

Для определения вершины отклика за критерий ошибки принимается спад z в момент t = Т. Как уже упоминалось, временная характеристика строго зависит от частотных характеристик. И поэтому максимально линейной фазовой характеристике, а также плавно спадающей амплитудной характеристике соответствуют монотонный характер фронта (l < 1 %) и относительно большее время нарастания. В свою очередь максимально гладкой амплитудной характеристике, достаточно быстро спадающей за пределами полосы пропускания, соответствует отклик с небольшими амплитудами выбросов и относительно малым временем нарастания. Спад отклика зависит от нижней граничной частоты усилителя. Чем эта частота меньше, тем меньше спад. В принципе не существует простых зависимостей между частотными и импульсными параметрами усилителя. Однако на практике можно пользоваться зависимостью, которая связывает время нарастания τн и верхнюю граничную частоту fв. Оказывается, что произведение τнfв есть величина постоянная и примерно равная 0,4. Из этой зависимости следует, что время нарастания единичного отклика тем меньше, чем выше верхняя граничная частота усилителя.

На чем основана компенсация усилителя?

Широкополосные резистивные усилители характеризуются такой амплитудной характеристикой в некотором диапазоне частот, которого из-за коэффициента усиления усилителя в ряде применений может оказаться недостаточно. Поэтому имеется необходимость в увеличении площади усиления путем расширения его полосы. Этот метод основан на компенсации падения коэффициента усиления в диапазоне высоких и низких частот с помощью соответственно включенных пассивных цепей. Благодаря этим цепям сопротивление нагрузки усилителя в диапазоне частот, в котором происходит уменьшение усиления, увеличивается, в связи с чем происходит выравнивание усиления.

Каковы цепи компенсации усилителя в диапазоне высоких частот?

Схемы компенсации усилителя в диапазоне высоких частот делятся на двух- и четырехполюсниковые схемы компенсации в зависимости от того, являются ли межкаскадные компенсирующие цепочки двух- или четырехполюсниковыми.

Простейшая схема двухполюсниковой компенсации с помощью параллельной индуктивности показана на рис. 7.12.




Рис. 7.(2. Ламповый (а) и транзисторный (б) усилители с двухполюсниковой компенсацией параллельной индуктивностью


Индуктивность подобрана таким образом, что вместе с полной выходной емкостью каскада образует параллельный резонансный контур на частоте, при которой амплитудная характеристика начинает заметно спадать.

В зависимости от добротности резонансного контура получают плоскую или возрастающую (приподнятую) в определенном диапазоне частот амплитудную характеристику. На рис. 7.13 представлено семейство характеристик усилителя со схемой двухполюсниковой компенсации для разных значений добротности Q.



Рис. 7.13. Амплитудные характеристики усилителя с компенсаций параллельной индуктивностью


Можно показать, что максимально плоская амплитудная характеристика получается при Q = 0,414. Произведение коэффициента усиления на ширину полосы пропускания составляет при этом 1,73 значения аналогичного произведения для усилителя без компенсации. Это означает, что при заданном усилении компенсация позволяет на 73 % увеличить ширину полосы пропускания усилителя. Теоретический предел возможности расширения полосы с помощью более сложных схем двухполюсниковой компенсации равно 2. Bpeменные характеристики усилителя с двухполюсниковой компенсацией демонстрируют меньшее время нарастания но начиная с Q = 0,25, появляются выбросы (колебания), возрастающие с увеличением добротности.

Четырехполюсниковая компенсация состоит во включении между выходом данного усилительного каскада и входом последующего соответствующим образом рассчитанного корректирующего четырехполюсника. В схемах этого типа корректирующий четырехполюсник отделяет выходную емкость данного каскада от входной емкости последующего, благодаря чему площадь усиления может быть больше, чем в усилителях с двухполюсниковой коррекцией, поскольку компенсация касается меньших емкостей. Теоретический предел роста произведения GB для четырехполюсниковон компенсации по сравнению с произведением GB усилителя без компенсации составляет 4.

К недостаткам четырехполюсниковой компенсации относятся зависимость частотных и временных характеристик от соотношения входной и выходной емкостей усилителя, а также худшие импульсные свойства в результате того, что предельный фазовый сдвиг больше, чем в усилителях с двухполюсниковой компенсацией.

На рис. 7.14 представлена простейшая схема четырехполюсниковой компенсации с помощью последовательной индуктивности.



Рис. 7.14. Четырехполюсниковый элемент компенсации усилителя


Индуктивность разделяет емкости Са и Сс, в результате чего образуется фильтр нижних частот, корректирующий характеристику. Ламповый вариант схемы приведен сознательно, поскольку в транзисторных схемах выходная емкость намного меньше входной и разделение емкостей согласующим четырехполюсником на практике не дает преимуществ. В ламповых схемах четырехполюсниковая компенсация является эффективной, поскольку Са и Сс — обычно одного порядка (Са ~= 1/2·Сс).

Например, если отношение емкости Сс к полной Са + Сс составляет 0,75, добротность Q = 0,67, то увеличение произведения GB составляет 2, время нарастания τн = 1,1·R·(Са + Сс), а амплитуда первого выброса ~= 8,1 %.

Какова схема компенсации усилителя в диапазоне низких частот?

Амплитудная характеристика в диапазоне низких частот может быть расширена путем включения последовательно с нагрузкой резистора Rx и конденсатора Cх (рис. 7.15).



Рис. 7.15. Схема компенсации в диапазоне низких частот


В диапазоне средних и высоких частот реактивное сопротивление конденсатора Сх настолько мало, что практически замыкает резистор Rx на этих частотах и приводит к тому, что эффективное сопротивление нагрузки равно R1.

В диапазоне низких частот шунтирующим влиянием емкости Сх можно пренебречь. В этом случае эффективное сопротивление увеличивается до R1 + Rx. Увеличение сопротивления нагрузки вызывает увеличение усиления каскада и, следовательно, при соответственно подобранных Rx и Сх компенсацию падения усиления, вызванного влиянием делителя, состоящего из конденсатора связи и входного сопротивления Rвх.

Временная характеристика скомпенсированного усилителя в диапазоне низких частот имеет меньший спад, чем временная характеристика некомпенсированного усилителя.

Что такое усилитель постоянного тока?

Усилителем постоянного тока называется усилитель, предназначенный для усиления медленно изменяющихся колебаний с постоянной составляющей. Амплитудная характеристика такого усилителя в диапазоне низких частот охватывает также «частоту» f = 0 Гц. Ограничение амплитудной характеристики в диапазоне высоких частот происходит по тем же причинам, что и в усилителе с емкостной связью.

Характерной чертой усилителей постоянного тока является отсутствие в них каких-либо реактивных элементов связи (конденсаторов, трансформаторов). Отдельные каскады связаны непосредственно: анод или коллектор данного каскада соединен с сеткой или базой последующего каскада. Отсюда усилители постоянного тока часто называются усилителями с непосредственной связью.

Проблемой, неразрывно связанной с этим типом усилителя, является проблема устойчивости. Каждое изменение в результате нестабильности рабочей точки ламп или транзисторов (дрейфа), фона, вызванного неидеальной фильтрацией напряжения питания, или эффекта старения элементов не может быть выделено из полезного сигнала и появляется на выходе в виде сигнала помехи. В случае транзисторов еще добавляется температурная чувствительность транзистора. В связи с проблемой стабильности наиболее подходящими схемными решениями усилителей с непосредственной связью являются те, в которых содержатся схемы компенсации, как следующие из самой конфигурации схемы, так и основанные на использовании в качестве компенсирующих элементов транзисторов и диодов. Кроме того, непосредственная связь в усилителях постоянного тока создает ряд трудностей, связанных с питанием отдельных каскадов.

Какова схема наиболее простого усилителя постоянного тока?

Простейшая схема транзисторного усилителя постоянного тока представлена на рис. 7.16, а. В первом каскаде используется обычная цепь подачи смещения на базу. Цепями смещения каждого последующего каскада являются резистор нагрузки коллектора и транзистор предыдущего каскада. Представленная схема является несимметричной с присущим ей недостатком, заключающимся в большом дрейфе тока. Стабилизация рабочих точек транзисторов с помощью резисторов в цепях эмиттеров в этом случае не дает результатов, поскольку отрицательная обратная связь одинаково эффективно действует как на дрейф, так и на полезный сигнал, и поэтому отношение сигнала к дрейфу не улучшается. В этой ситуации проблема уменьшения дрейфа может быть решена либо стабилизацией напряжения питания, либо применением компенсирующих схем, состоящих из диодов, термисторов или транзисторов с соответствующим образом подобранными электрическими и температурными характеристиками. Эти схемы изменяют рабочую точку таким способом, что происходит компенсация изменений выходного сигнала. В качестве примера на рис. 7.16, б показан усилитель постоянного тока со схемой компенсации дрейфа (Д1, R1, R2, R3), использующей полупроводниковый диод. Эта схема, как и любая компенсационная схема, требует тщательного подбора элементов и чувствительна ко всяким изменениям их параметров.

Непростой задачей (особенно при большом количестве каскадов) является подбор соответствующих сопротивлений резисторов в цепях коллектора и эмиттера в схеме на рис. 7.16, а, которые бы устанавливали смещение базы, обеспечивающее работу схемы на линейном участке характеристик транзисторов. Поэтому применяется также схема с кремниевыми диодами, включенными в цепи эмиттера транзисторов (рис. 7.16, в). Резисторы, включенные между коллектором данного каскада и базой следующего, ограничивают ток базы.





Рис. 7.16. Транзисторный усилитель постоянного тока с непосредственной связью (а), с диодной компенсацией дрейфа (б) и кремниевыми диодами в цепи питания транзисторов (в)

Что такое усилитель постоянного тока с противоположной симметрией?

Противоположная симметрия, называемая также комплементарной, допускает каскадное соединение многих транзисторных каскадов усилителей постоянного тока при использовании источника низкого напряжения. Понятие противоположной симметрии связано исключительно с транзисторами и не имеет аналоги в ламповых схемах. Симметрия такого типа основана на использовании двух транзисторов, из которых первый является типа р-n-р, а второй — типа n-р-n или наоборот.

Схема такого усилители па транзисторах показана на рис. 7 17.



Рис. 7.17. Усилитель постоянного тока на комплементарных транзисторах


Транзистор Т1 типа n-р-n. Поскольку напряжение базы транзистора Т1 составляет 4 В, а напряжение эмиттера этого транзистора равно 3,3 В, база имеет по отношению к эмиттеру положительное смещение 0,7 В, т. е. такое, каким характеризуются кремниевые транзисторы типа р-n-р. Коллектор с напряжением 12 В непосредственно связан с базой транзистора Т2. Напряжение эмиттера этого транзистора составляет 12,7 В, что обеспечивает отрицательное смещение базы относительно эмиттера в кремниевом транзисторе Т2 типа р-n-р. Напряжение коллектора этого транзистора составляет 1,8 В, т. е. является менее положительным, чем напряжение эмиттера, а это означает, что коллектор смещен отрицательно относительно эмиттера. Путем соответствующего подбора сопротивлений резисторов можно получить равенство постоянных напряжений в выходной и входной цепях.

Достоинством схемы, основывающимся на противоположности характеристик обоих транзисторов, является малая чувствительность к изменениям температуры и параметров транзисторов.

Что такое усилитель с преобразованием и каков принцип его работы?

Как уже известно, в усилителях постоянного тока с непосредственной связью возникают трудности, связанные с дрейфом, нестабильностью усиления и условиями питания. Дрейф усилителя начинает приобретать принципиальное значение при усилении малых сигналов.

Методом, позволяющим избежать указанных трудностей, является использование усилителя с преобразованием. Принцип действия такого усилителя состоит в преобразовании входного сигнала постоянного или медленно изменяющегося тока в переменный сигнал, усилении его в обычном усилителе переменного тока, а затем в преобразовании его снова в сигнал постоянного или медленно меняющегося тока.

Структурная схема усилителя с преобразованием представлена на рис. 7.18.



Рис. 7.18. Структурная схема усилителя с преобразованием


Входной (модулятор) и выходной (демодулятор) преобразователи поочередно выполняют преобразование постоянного напряжения в переменное и переменное в постоянное. Входным преобразователем обычно является механический вибратор, транзисторный ключ или транзисторная схема, работающая в двух крайних состояниях пропускания и непропускания. Транзисторная ключевая схема обычно возбуждается (управляется) от независимого источника переменного тока, например мультивибратора, работающего с частотой 400 — 1000 Гц. Выходным преобразователем является детектирующая схема.

Как работает усилитель с трансформаторной связью?

Усилитель с трансформаторной связью называется также трансформаторным усилителем. Его схема показана на рис. 7.19. Усилительный элемент — лампа или транзистор, а трансформатор — элемент связи каскада усиления с последующим каскадом либо нагрузкой. Первичная обмотка трансформатора включена между зажимом источника питания и анодом или коллектором. Вторичная обмотка подает сигнал на сетку или базу следующего каскада или прямо в нагрузку, например громкоговоритель.

Трансформатор, как известно, не пропускает постоянный ток из первичной обмотки во вторичную, поэтому он выполняет функции элемента, разделяющего постоянные напряжения, действующие на электродах ламп или транзисторов, включенных каскадно, аналогично конденсатору связи в резистивно-емкостном усилителе. Из-за того что обмотки трансформатора имеют очень малое сопротивление, постоянное напряжение на аноде или коллекторе практически равно напряжению питания.

В трансформаторном усилителе переменный ток, протекающий в первичной обмотке трансформатора, наводит ЭДС во вторичной обмотке. Это напряжение служит для возбуждения последующего каскада или нагрузки (чаще всего громкоговорителя).



Рис. 7.19. Принципиальная схема трансформаторного усилителя

Каковы достоинства трансформаторной связи?

Достоинствами трансформаторной связи являются: удобные условия питания и стабилизации рабочей точки из-за малого сопротивления обмоток для постоянной составляющей; возможность трансформации сопротивления, в результате чего достигается увеличение коэффициента усиления; возможность симметрирования несимметричной схемы или наоборот.

Одним из основных параметров трансформатора является коэффициент передачи, определяемый как отношение числа витков вторичной обмотки n2 к числу витков первичной n1

p = n2/n1

В идеальном трансформаторе (рис. 7.20, a), в котором энергия передается без потерь, коэффициент передачи напряжения равен коэффициенту трансформации

p = U2/U1

Из закона сохранения энергии следует, что полная мощность в первичной цепи должна быть равна полной мощности во вторичной, и поэтому коэффициент передачи тока равен обратной величине коэффициента передачи напряжения

p = I1/I2

На основе приведенных зависимостей можно легко показать, что коэффициент передачи сопротивлений равен квадрату коэффициента трансформации (передачи)

Z2/Z1 = р2

или коэффициент трансформации равен корню квадратному из коэффициента передачи сопротивлений.

Последняя зависимость позволяет трактовать трансформатор не только как устройство для трансформации напряжения и тока, но и как устройство для трансформации сопротивлений. Этим свойством трансформатора пользуются в том случае, когда необходимо согласовать сопротивления нагрузки и источника для создания оптимальных условий передачи мощности в цепи. Если, например, источник с внутренним сопротивлением 100 Ом должен передавать мощность в нагрузку с сопротивлением 16 Ом, достаточно использовать понижающий трансформатор с коэффициентом передачи

р = √(16/100) = √(1/6,25) = 1:2,5.

Трансформатор позволяет также перейти от несимметричной схемы к симметричной и наоборот. Несимметричной называется схема, в которой один зажим генератора и нагрузки соединен с массой схемы, а второй имеет потенциал выше или ниже.

Все рассматриваемые до сих пор усилители были несимметричными, поскольку из-за источника сигнала один конец нагрузки был всегда соединен с массой.

Часто возникает необходимость создания симметричного источника, т. е. разделенного на две части, на которых действуют одинаковые по значению относительно малые напряжения, но противоположной полярности.

Симметричная относительно массы схема имеет три провода. Средний (нулевой) провод имеет потенциал массы. Остальные два провода имеют определенный потенциал относительно массы, причем когда на одном из них действует положительный мгновенный потенциал, то на другом — отрицательный.

Идеальным симметрирующим устройством является трансформатор (рис. 7.20, б). Для перехода на симметричную схему достаточно к несимметричному источнику подключить трансформатор со вторичной обмоткой, разделенной на две равные части. При соединении с массой, выведенной наружу трансформатора средней точки обмотки, получаем симметричный источник.



Рис. 7.20. Идеальный трансформатор (а) и трансформатор как симметрирующая схема (б)

Какие недостатки у трансформаторной связи?

Недостатками трансформаторной связи являются: увеличение стоимости и габаритных размеров схемы, ухудшение частотной характеристики, возможность возникновения дополнительных нелинейных искажений из-за нелинейности самого трансформатора.

Первый недостаток не требует подробных комментариев. Трансформатор, выполненный, как правило, на сердечнике из магнитного материала и содержащий часто несколько сотен витков, является устройством, занимающим значительно больший объем, чем объем элементов, входящих, например, в состав транзисторного усилителя. Его стоимость значительно больше стоимости конденсатора связи.

Вид частотной характеристики усилителя, в котором используется трансформаторная связь, в основном зависит от частотной характеристики трансформатора. Трансформатор можно рассматривать как четырехполюсник, состоящий из нескольких индуктивностей (индуктивности первичной обмотки и индуктивности рассеяния), емкостей (емкости обмоток и межвитковые емкости) и сопротивлений (сопротивления обмоток). Вид частотной характеристики такого четырехполюсника зависит от параметров составляющих его элементов, а те в свою очередь от конструкции и исполнения трансформатора. Не вникая в детали, можно утверждать, что в диапазоне низких частот принципиальное значение имеет индуктивность первичной обмотки. Чем меньше требуемая нижняя граничная частота, тем большей она должна быть.

В трансформаторе, используемом в усилителе звуковых частот, индуктивность часто превышает 100 Гн. В диапазоне высоких частот верхняя граничная частота ограничивается индуктивностями рассеяния, которые должны быть как можно меньше. Они образуют последовательный резонансный контур, который при благоприятных условиях (высокая добротность Q трансформатора) может вызвать подъем амплитудной характеристики А вблизи резонансной частоты (рис. 7.21).



Рис. 7.21. Амплитудная характеристика трансформатора:

1 — плоская; 2 — с выбросом вблизи резонансной частоты


Если принять во внимание требование малых габаритных размеров трансформатора, то получение широкой и плоской амплитудной характеристикиявляется не простым делом.

Дополнительным затруднением в правильном изготовлении трансформатора является тот фактор, что через его первичную обмотку протекает постоянный ток (анода или коллектора), приводящий к насыщению сердечника. Трансформатор должен работать вдали от точки насыщения. Если насыщение сердечника возникает до появления пика усиливаемого сигнала, наложенного на постоянную составляющую, появляются нелинейные искажения. Это очень существенная проблема, особенно в усилителях больших сигналов.

Когда используется трансформаторная связь?

Из-за высокой стоимости трансформатора и связанных с этим недостатков трансформаторная связь используется редко. Чаще всего этот вид связи применяют в выходных мощных каскадах как ламповых, так и транзисторных, в которых используется возможность согласования малого сопротивления, например, громкоговорителя с оптимальным сопротивлением нагрузки активного элемента. Громкоговоритель сознательно указан в качестве примера оконечной нагрузки усилителя, поскольку чаще всего трансформаторную связь применяют в усилителях звуковых частот. Именно в этих усилителях трансформаторы также используют в качестве симметрирующих схем для возбуждения балансных (противотактных) усилителей мощности. В промежуточных каскадах ламповых и транзисторных усилителей трансформаторную связь применяют крайне редко, так как выигрыш в усилении и согласовании не компенсирует недостатков трансформатора.

Иногда трансформаторная связь применяют в импульсных усилителях. Трансформатор с минимальными индуктивностями и емкостями рассеяния в этом случае проектируют исходя из получения оптимальных параметров без учета связанных с этим расходов.

Какими параметрами характеризуется усилитель мощности?

Задачей усилителя мощности является подведение к приемнику энергии (нагрузки) определенной мощности переменного тока. Главными параметрами, определяющими энергетические свойства усилителя мощности, являются: полезная выходная мощность Рвых и максимальная выходная мощность в условиях полного возбуждения усилителя; энергетический КПД μ, определяемый как отношение полезной выходной мощности к мощности, подводимой от источника питания; уровень нелинейных искажений, характеризуемый содержанием гармоник Кг выходного сигнала при синусоидальном входном сигнале; частотная характеристика, определяемая нижней и верхней граничными частотами, а также формой характеристики внутри полосы (неравномерность усиления).

Первые три параметра взаимосвязаны и зависят прежде всего от типа лампы или транзистора, используемой схемы и режима работы усилителя.

Рассмотренные до сих пор усилительные схемы работали в классе А, т. е. рабочая точка находилась посередине рабочей характеристики. Можно сказать, что класс А характеризуется постоянным протеканием анодного или коллекторного тока в такт с управляющим сигналом. Поскольку полный период синусоидального возбуждающего сигнала соответствует углу 360°, то угол отсечки анодного или коллекторного тока 2θ также равен 360°.

В усилителях мощности применяют и другие классы работы.

Класс АВ — рабочая точка находится в нижней части рабочей характеристики; угол отсечки удовлетворяет условию 180°< 2θ < 360°.

Класс В рабочая точка находится на начальном участке рабочей характеристики вблизи границы отсечки тока (2θ = 180°).

Класс С характеризуется углом 2θ < 180°, однако он находит применение только в резонансных усилителях высокой частоты.

Ниже будут рассмотрены усилители мощности, которые нашли широкое применение. Усилители мощности переменного тока низкой частоты работают в полосе от нескольких десятков герц до 10–20 кГц. Приемником мощности в усилителях этого типа является громкоговоритель. Усилители мощности работают в классах А, АВ и В, причем два последних класса требуют использования балансных или двухтактных схем.

Что такое несимметричный усилитель мощности класса А?

На рис. 7.22 представлены схемы такого усилителя в ламповом и транзисторном вариантах. Представляется, что они идентичны усилителям напряжения, однако между ними имеются различия.



Рас. 7.22. Ламповый (а) и транзисторный (б) усилители мощности класса А


Принципиальное различие заключается в использовании активного элемента большей мощности. В случае лампового усилителя мощности лампа характеризуется большим анодным током, около нескольких десятков миллиампер, при большом анодном напряжении 200–300 В. Рассеиваемая на аноде мощность составляет несколько ватт, поэтому анод мощной лампы должен быть соответственно большим. Аналогично транзистор в усилителе мощности характеризуется большим, около нескольких ампер, током, протекающим через переход коллектор — база.

Однако большой ток вызывает значительный разогрев области перехода, что в случае недостаточного охлаждения транзистора приводит к выходу последнего из строя. Поэтому для мощных транзисторов необходимо применение специальных устройств для отвода тепла, т. е. радиаторов. Следующее отличие по сравнению с усилителями напряжения заключается в значительно меньшем сопротивлении катодного или эмиттерного резистора в усилителе мощности, что непосредственно вытекает из больших значений катодного и эмиттерного токов.

В представленных на рис. 7.22 схемах нагрузка усилителя через трансформатор связана с анодом или коллектором. Трансформатор согласует малое сопротивление нагрузки (около нескольких ом) с оптимальным сопротивлением нагрузки для активного элемента.

В ламповых схемах выбор оптимального нагрузочного сопротивления диктуется стремлением получить как можно большую выходную мощность при допустимых искажениях. При максимальной выходной мощности, достигаемой в усилителях класса А (теоретический КПД составляет 50 %), искажения относительно велики. Поэтому на практике они не используются.

В триодных усилителях оптимальное с точки зрения мощности нагрузочное сопротивление в 2 раза больше внутреннего сопротивления триода. При таком сопротивлении нагрузки КПД триодного усилителя класса А далеко от максимального и на практике составляет примерно 15–25 %. Если учитывать еще малый коэффициент усиления триода, то становится очевидным, что его энергетические свойства не являются выгодными. В связи с этим применение триодов в усилителях мощности ограничивается схемами очень большой мощности, в которых пентоды не могут быть использованы.

В пентодных усилителях оптимальное нагрузочное сопротивление составляет от 1/4 до 1/8 внутреннего сопротивления и близко по значению к нагрузочному сопротивлению, при котором имеет место минимум нелинейных искажений. Коэффициент полезного действия пентодного усилителя больше, чем триодного, и составляет обычно 30–40 %.

В случае транзисторного усилителя проблема нелинейных искажений более сложна, поскольку искажения зависят как от выходных, так и от входных характеристик транзистора. Существует оптимальное сопротивление источника, несколько меньшее среднего выходного сопротивления транзистора в схеме с ОЭ, при котором искажения минимальны. Нагрузочное сопротивление подбирают исходя в основном из максимальной мощности. С учетом характерных для мощных транзисторов малых напряжений и больших токов нагрузочные сопротивления малы, единицы или десятки ом, что обеспечивает выгодные условия совместной работы, например с громкоговорителем с малым сопротивлением.

На практике транзисторные усилители мощности класса А используются не часто, несмотря на то, что их КПД близок к теоретическому и составляет 45–50 %. Это следует из тенденции к максимальному использованию располагаемой мощности транзистора и усилителя. Частотные характеристики трансформаторных усилителей мощности зависят главным образом от параметров трансформатора.

Как работает двухтактный усилитель?

Принципиальная схема двухтактного усилителя, называемого также балансным усилителем, представлена на рис. 7.23.


Рис. 7.23. Принципиальная схема двухтактного усилителя


Для правильной работы схемы напряжения, возбуждающие оба транзистора, должны иметь одинаковые амплитуды и противоположные базы.

С учетом того что источники сигналов в общем несимметричны, имеется необходимость в применении симметрирующей схемы. Простой однако не единственной цепью этого типа является трансформатор, в котором вывод средней точки вторичной обмотки соединен с массой. Благодаря такому соединению потенциал этой точки относительно массы равен 0 В. Теперь, если мгновенная полярность сигнала на верхнем зажиме вторичной обмотки положительна, на нижнем зажиме она отрицательна и наоборот. В соответствии с этим, если напряжение u1 положительно, смещение в проводящем направлении транзистора Т1 уменьшается и убывает его коллекторный ток, т. е. напряжение на коллекторе понижается. В этом же самое время напряжение u2 является отрицательным и увеличивает смещение в проводящем направлении транзистора Т2, в результате чего его коллекторный ток увеличивается и напряжение на коллекторе также возрастает. Кроме того, если мгновенное напряжение на коллекторе транзистора Т1 минимально, то на коллекторе транзистора Т2 оно максимально. Это также означает, что средний вывод выходного трансформатора имеет отрицательный потенциал относительно коллектора транзистора и положительный по отношению к коллектору транзистора Т1. Поэтому напряжения, действующие на каждой половине первичной обмотки выходного трансформатора, находятся в фазе, суммируются друг с другом и создают переменное напряжение, значение которого в 2 раза больше, чем в случае одного транзистора. В условиях правильного согласования схемы с нагрузкой мощность, выделяемая в нагрузке, также в 2 раза больше.

Какие преимущества имеет двухтактный усилитель?

Хотя усилитель, созданный из двух включенных параллельно транзисторов, отдает в 2 раза большую мощность, чем усилитель на одном транзисторе, он все же не обладает многими преимуществами двухтактной схемы.

Одним из преимуществ, являющихся следствием распределения токов, является уничтожение постоянных составляющих в выходном трансформаторе. Это имеет важное практическое значение, поскольку отсутствие постоянной составляющей, насыщающей сердечник трансформатора, в значительной степени упрощает его конструкцию, а искажения, которые могли бы возникнуть в трансформаторе из-за протекания постоянной составляющей, исключаются.

Из анализа нелинейных искажений, вносимых двухтактной схемой, следует, что четные гармоники (вторая, четвертая и следующие, кратные частоте возбуждающего сигнала) вычитаются на выходе, и, следовательно, суммарные потери будут меньше. Отсюда следует, что при том же самом возбуждении, что и в однотактном усилителе, и при тех же самых заданных искажениях можно получить в 2 раза большую мощность по сравнению с мощностью однотактного усилителя.

В цепи питания двухтактной схемы вычитаются основная составляющая и нечетные гармоники возбуждающего сигнала. Благодаря этому в схеме не возникают паразитные обратные связи в цепи питания, а, кроме того, пульсации из источника питания не проникают на выход усилителя.

Очень важным преимуществом двухтактных усилителей является возможность их работы не только в режиме класса А, но также и в режиме класса В или АВ. В усилителе класса В транзистор Т2 (рис. 7.23) усиливает только первую половину периода входного напряжения и заперт во время длительности второго, положительного полупериода. Но именно в этот момент сигнал на базе транзистора Т1 отрицателен и усиливается транзистором. Оба усиленных колебания суммируются в выходном трансформаторе, в результате чего образуется колебание той же самой формы, что и на входе усилителя. Из-за того что в двухтактных усилителях класса В рабочие точки обоих транзисторов лежат вблизи области отсечки тока, мощность питания, а также мощность, рассеиваемая в усилительных элементах в отсутствие возбуждающего сигнала, являются очень малыми. Принимая во внимание возможность полного использования (возбуждения) транзистора, легко сделать вывод, что КПД усилителя этого типа очень высок. Теоретически он составляет 78 %, на практике в транзисторных схемах достигает примерно 75 %.

Может ли двухтактная схема работать без выходного трансформатора?

Да, если выходное сопротивление близко к оптимальному. При соответствующей конструкции схемы усилителя можно исключить выходной трансформатор. Благодаря этому значительно снизятся стоимость и габаритные размеры устройства, улучшится его частотная характеристика и уменьшатся нелинейные искажения.

Бестрансформаторные схемы чаще всего используют в транзисторных усилителях, исходя из более выгодных условий совместной работы транзисторов с малыми нагрузочными сопротивлениями. Бестрансформаторные усилители на лампах труднее реализовать из-за необходимости использования значительно больших сопротивлений нагрузки (несколько сотен ом или даже килоом).

Сначала рассмотрим ламповую бестрансформаторную схему, представленную на рис. 7.24.



Рис. 7.24. Бестрансформаторный двухтактный ламповый усилитель


Обе лампы, включенные последовательно, питаются анодным напряжением, в 2 раза большим, чем напряжение, требуемое для одной лампы. Нагрузка связана с лампами посредством конденсатора связи С. Для обеспечения нужной характеристики усилителя в диапазоне низких частот его емкость выбирается большой. При симметричном возбуждении обеих ламп схема работает, как двухтактный усилитель. Возбуждающие напряжения сдвинуты по фазе на 180°. Их можно получить, используя входной трансформатор с симметричными, но изолированными друг от друга вторичными обмотками. В обсуждаемой схеме для инверсии (переворота) фазы входного сигнала используется нижняя лампа.

Сигнал на резисторе Rк имеет противоположную фазу относительно входного сигнала, однако, благодаря соответствующему подбору сопротивления, одинаковую амплитуду. Этот сигнал управляет верхней лампой двухтактного усилителя.

Бестрансформаторные транзисторные усилители чаще всего работают в режиме класса В. Из-за отсутствия выходного трансформатора напряжение на коллекторе непроводящего транзистора не увеличивается, в связи с чем может быть увеличено питающее напряжение. Это приводит к лучшему использованию транзисторов по напряжению и в результате к большей выходной мощности. Что касается способа управления, то чаще всего применяют трансформаторную или непосредственную связь.

Примером бестрансформаторного (со стороны нагрузки) транзисторного двухтактного усилителя с емкостной связью с нагрузкой является схема, представленная на рис. 7.25.



Рис. 7.25. Бестрансформаторный двухтактный усилитель при емкостной связи с нагрузкой


Принцип работы этой схемы очень похож на принцип работы ранее рассмотренной. Разница заключается в использовании входного трансформатора с двумя независимыми обмотками, обеспечивающими сдвинутые по фазе возбуждающие напряжения.

Значительное упрощение условий возбуждения достигается при использовании в двухтактном усилителе мощности транзисторов р-n-р и n-p-n (рис. 7.26).



Рис 7.26. Двухтактная схема с комплементарными транзисторами


В схеме такого типа симметричное возбуждение является излишним из-за противоречивых свойств транзисторов. Управляющий сигнал, поданный на базу одного транзистора, возбуждает его таким образом, что он будет проводить в то время, когда другой транзистор будет заперт. Поэтому работа в режиме класса В осуществляется без входного трансформатора. Недостатком схем этого типа является трудность получения достаточно высокой степени симметрии дополнительных транзисторов, что может быть причиной появления больших нелинейных искажений.

Что такое симметрирующий усилитель?

Как уже известно, для возбуждения двухтактного усилителя необходимы два симметричных напряжения, сдвинутых на 180° по фазе относительно друг друга. Схема, обеспечивающая такие напряжения, называется симметрирующей схемой, фазовращателем или инвертором фазы. Наиболее простым, однако достаточно дорогим способом получения симметричного сигнала является применение трансформатора с разделенной вторичной обмоткой. Имеются, однако, симметрирующие усилители, которые выполняют роль симметрирующего трансформатора. В симметрирующих усилителях используется свойство переворачивания фазы сигнала в катодной или эмиттерной цепи усилительного каскада.

Простейшей симметрирующей схемой является двухкаскадный усилитель (рис. 7.27, а).



Рис. 7.27,а. Двухкаскадный симметрирующий транзисторный усилитель


Оба транзистора работают по схеме с ОЭ. Сигнал с коллектора транзистора Т1 передается на выход 1 и одновременно через делитель напряжения, образованного сопротивлением R и входным сопротивлением Rвх транзистора Т2, на базу транзистора Т2. На коллекторе этого транзистора появляется усиленное напряжение обратной полярности, которое поступает на выход 2. Условием равенства напряжений на выходах 1 и 2 является такое деление выходного напряжения транзистора Т1, при котором транзистор Т2 возбуждается частью напряжения, равной обратной величине коэффициента передачи этого транзистора. Недостатком схемы обычно является отсутствие симметрии во всем полезном диапазоне частот, поскольку линейные искажения второго каскада приводят к тому, что амплитудные характеристики на обоих выходах неодинаковы

Другой симметрирующей схемой является схема с разделенной нагрузкой (рис. 7.27, б), в которой используются одновременно два выхода: из цепей коллектора и эмиттера. Переменное напряжение на коллекторе сдвинуто по фазе на 180° по отношению к входному, а переменное напряжение на эмиттере находится в фазе с входным.

Поскольку коллекторный и эмиттерный токи равны или почти равны друг другу, напряжения на обоих выходах будут симметричны, если сопротивления в выходных цепях будут равны или почти равны друг другу. Точная симметрия достигается подбором одного из резисторов в цепи коллектора или эмиттера. Характерной особенностью схемы являются неодинаковые внутренние сопротивления на обоих выходах: большее на выходе 1 и меньшее на выходе 2.



Рис. 7.27,б. Симметрирующая схема с разделенной нагрузкой

Каким образом можно получить большое входное сопротивление усилителя?

Входное сопротивление усилителя является одним из важнейших параметров усилителя. Очень часто оказывается важным, чтобы входное сопротивление было максимально большим (высоким). Условием большого входного сопротивления является большое сопротивление и малая входная емкость усилительного каскада, а также малое влияние входных цепей питания активного элемента.

Для ламповых усилителей с заземленным катодом входное сопротивление определяется максимально допустимым сопротивлением утечки сетки (составляющего максимально несколько мегом). Входная емкость зависит от емкости между сеткой и катодом Сс. к, а также емкости, вносимой за счет эффекта Миллера и равной Са. с(1 + Кu). На практике минимальная входная емкость составляет от единиц до 10–20 пФ. В большинстве случаев такое значение входного сопротивления вполне достаточно. В отдельных случаях, когда требуется значительно большее входное сопротивление, на входе усилителя можно использовать каскад с заземленным анодом или катодный повторитель (рис. 7.28, а). Характерными чертами-такой схемы являются: усиление по напряжению меньше единицы, малое выходное сопротивление, а также очень большое входное сопротивление и малая входная емкость. На практике получают входное со противление около десятков мегом, а емкость — нескольких пикофарад.

В транзисторных схемах, кроме схем на полевых транзисторах, характеризующихся высоким входным сопротивлением, получить большое входное сопротивление значительно труднее. Входное сопротивление усилителя, работающего по схеме с ОЭ, не превышает нескольких десятков килоом. Поэтому для получения больших входных сопротивлении приходится использовать специальные схемы. Одной из них является аналог лампового катодного повторителя — эмиттерный повторитель (рис. 7.28, б).



Рис. 7.28. Катодный (а) и эмиттерный (б) повторители


Входное сопротивление эмиттерного повторителя выражается формулой Zвх ~= h21эRэ, из которой следует, что оно равно сопротивлению в цепи эмиттера, умноженному на коэффициент передачи по току транзистора. Это не означает, что входное сопротивление может достигать произвольно большого значения за счет увеличения значения Rэ. Максимальное входное сопротивление не может превышать сопротивления база — коллектор, равного 1/h22б. Кроме того, делитель в цепи смещения базы, вносящий на вход сопротивление Rб = R1R2(R1 + R2), также уменьшает эффективное входное сопротивление повторителя.

Одним из эффективных методов увеличения входного сопротивления эмиттерного повторителя является увеличение коэффициента передачи транзистора по току h21э. В транзисторных схемах благодаря токовому характеру возбуждения (управления) транзистора это оказывается возможным в схеме «супер-альфа», называемой также схемой Дарлингтона. В этой схеме (рис. 7.29) ток эмиттера первого транзистора управляет базой второго транзистора, в связи с чем результирующий коэффициент передачи тока h21э равен произведению h'21эh''21э отдельных-транзисторов: h21э = h'21эh''21э. Для большего числа транзисторов, работающих в схеме Дарлингтона, h21э = h'21эh''21эh'''21э… На рис. 7.29 представлен эмиттерный повторитель, собранный по подобной схеме.




Рис. 7.29. Эквивалентная схема (а) и эмиттерный повторитель (б) схемы «суперальфа»


В соответствии с предыдущими рассуждениями его входное сопротивление выражается следующей формулой:

Zвх = h'21эh''21эh21к

Что такое дифференциальный усилитель?

Дифференциальный усилитель — это усилитель на двух транзисторах с эмиттерной связью, позволяющей использовать в любых комбинациях несимметричные или симметричные вход и выход.

Принципиальная схема дифференциального усилителя, в котором выходное напряжение равно разности двух входных сигналов, показано на рис. 7.30.




Рис. 7.30. Дифференциальный усилитель с двумя входами и симметричным выходом:

а — принципиальная схема; б — схема с дополнительными эмиттерными резисторами.


На базы обоих транзисторов несимметрично подаются два напряжения u11 и u12. Выходное напряжение u2 представляет собой разность потенциалов, действующих на коллекторах транзисторов. Это напряжение симметрично. Дифференциальный усилитель используется для усиления только разности входных напряжений, а не самих входных напряжений.

Коэффициент усиления схемы, определяемый как отношение напряжения u2 к разности u12u11, выражается, при допущении идентичности транзисторов, следующей формулой:

Кu ~= — Rн/h11б

Путем использования дополнительных эмиттерных резисторов Rэ можно уменьшить чувствительность усиления к разбросу значений h11б. В этом случае

Кu ~= — Rн/h11б + Rн ~= — Rр/Rэ

причем последнее приближение справедливо, если Rэ >> h11б. Следует подчеркнуть, что усиление схемы полностью не зависит от сопротивления резистора RF. Однако, с другой стороны, чем больше сопротивление, тем лучше коэффициент редукции суммарного сигнала на выходе схемы. В противоположность дифференциальному (разностному) сигналу суммарный сигнал является паразитным сигналом, зависящим от общей составляющей входного напряжения. Теоретически эта составляющая не появляется на выходе. В действительности из-за внутренней несимметрии схемы дифференциального усилителя составляющая существует. Для увеличения коэффициента редукции суммарного сигнала следовало бы увеличивать сопротивление резистора RF. В реальных условиях это не всегда возможно. Поэтому вместо резистора RF можно использовать дополнительный транзистор в схеме идеального генератора тока или источника с бесконечно большим внутренним сопротивлением (рис. 7.31, а). В этом случае практическое сопротивление резистора RF равно выходному сопротивлению транзистора в схеме с ОБ

RF ~= 1/h22б

Дифференциальный усилитель может также работать и в других схемах управления по входам и отбора сигнала на выходе, на рис. 6.31, б представлена схема с одним несимметричным входом и симметричным выходом. Схема такого типа может быть использована в качестве симметрирующей схемы. Еще одна схема (рис. 7.31, в) служит для преобразования симметричного входного сигнала в несимметричный выходной сигнал. Эта схема характеризуется наличием двух входов и одного несимметричного выхода.





Рис. 7.31. Дифференциальные усилители с питанием от источника тока (а), с одним асимметричным входом и с симметричным выходом (б) и с двумя входами и асимметричным выходом (в)

Где применяют дифференциальные усилители?

Дифференциальные усилители нашли применение в технике интегральных микросхем при создании многокаскадных усилительных схем. Техника интегральных микросхем позволяет получать транзисторы и резисторы с очень хорошей воспроизводимостью. Благодаря этому сохраняется симметрия дифференциальных усилителей, являющаяся основой автоматической компенсации дрейфа, заключающейся в вычитании дрейфов двух симметричных трактов усиления. В этом случае проблема дрейфа имеет принципиальное значение, поскольку в интегральных микросхемах обычно применяется непосредственная связь последовательных каскадов дифференциальных усилителей. Этот вид связи устраняет проблему пропускания низких частот, связанную с конденсаторами связи. Использование конденсаторов с большой емкостью, а следовательно, и с большими геометрическими размерами свело бы на нет все преимущества малых габаритных размеров интегральных микросхем.

В интегральных микросхемах вместо резисторов RF в эмиттерной цепи дифференциальных усилителей, которые показаны в схемах на рис. 7.30 и 7.31,б и в, обычно используется третий транзистор, как показано на рис. 7.31, а.

Кроме интегральных микросхем дифференциальные усилители на дискретных элементах нашли применение в качестве усилителей постоянного тока и симметрирующих усилителей. Их также широко используют в измерительных приборах для получения сигнала, пропорционального разности двух входных напряжений. Примером этого может служить использование дифференциальной схемы на входе современного осциллографа.

Что такое каскод?

Это усилитель, состоящий из двух ступеней, из которых первая работает в схеме с ОК или ОЭ, а вторая — в схеме с ОС или ОБ.

На рис. 7.32 показаны два варианта каскодной схемы.




Рис. 7.32. Ламповая (а) и транзисторная каскодные схемы (б)


Ламповый (триодный) вариант каскода часто использовался во входных каскадах широкополосных усилителей из-за своих полезных свойств. Нагрузкой первой ступени служит малое входное сопротивление ступени с общей сеткой, что благоприятно влияет на стабильность первой ступени.

Анализируя усиление этой схемы, можно прийти к выводу, что оно зависит только от параметров первой лампы и сопротивления нагрузки второй лампы Кu = S·Zн. В общем случае можно утверждать, что каскод обладает усилительными достоинствами и стабильностью пентода и шумовыми свойствами триода. Малые шумы схемы являются следствием того, что на входе находится триод, характеризующийся малым эквивалентным шумовым сопротивлением. При большом значении крутизны S эквивалентное шумовое сопротивление может быть немного меньше, чем шумовое сопротивление пентода с такой же крутизной.

В транзисторной схеме большая часть усиления по току связана с первым каскадом, а шумы этого каскада превышают шумы каскада с ОБ. В результате этого в транзисторной схеме не наблюдаются выходные шумовые свойства, которыми характеризуется ламповый каскад. Именно поэтому каскодные схемы на транзисторах используются относительно редко.

На чем основана регулировка усиления и где она применяется?

Регулировка усиления является процессом, обеспечивающим постоянные условия работы отдельных каскадов усилителя. Если сигнал от источника, управляющего усилителем, велик, то существует возможность насыщения усилителя, причем это насыщение наступает в каскаде, в котором управляющий сигнал превышает максимально допустимый уровень возбуждения.

Регулировку усиления можно осуществить двумя способами: либо изменением крутизны S активного элемента, либо использованием делителя для управляющего сигнала. Для осуществления первого способа необходимы лампы или транзисторы с особыми характеристиками, крутизна которых зависит от выбора рабочей точки. Подавая на сетку или базу разное постоянное напряжение, можно изменить крутизну характеристики, а следовательно, и коэффициент усиления усилителя. Такой метод регулировки обычно используется в усилителях высокой частоты. Регулирующее напряжение вырабатывается схемой автоматической регулировки усиления (АРУ). В усилителях звуковых частот и широкополосных обычно применяют второй способ регулировки, основанный на делении управляющего сигнала. Такой способ регулировки осуществляют благодаря применению ступенчато го делителя напряжения или переменного резистора, расположенного в тракте усиления. Из-за шумов выбирается такая точка тракта, в которой уровень сигнала уже достаточно велик. В усилителях звуковых частот такой точкой является обычно выход предусилителя напряжения, который возбуждает выходной мощный каскад.

На рис. 7.33 представлена схема, поясняющая принцип регулировки усиления с помощью переменного резистора. Напряжение между движком переменного резистора и массой является возбуждающим; оно подводится к усилителю. Если движок находится в верхнем положении, то на сетке или базе транзистора усилителя действует полное входное напряжение. В нижнем положении движка происходит его «соединение» с массой схемы, в результате усилитель не усиливает.



Рис. 7.33. Потенциометр как регулятор усиления

Что такое развязывающая схема?

Все активные элементы многокаскадного усилителя обычно питаются от одного источника постоянного напряжения. Этот источник обладает некоторым внутренним сопротивлением Rист, которое, как видно из рис. 7.34, а, включено последовательно с нагрузочными резисторами отдельных каскадов усилителя. В связи с этим часть усиленного сигнала каждого каскада появляется на внутреннем сопротивлении источника. Это создает возможность взаимосвязи каскадов с большим уровнем сигнала с начальными каскадами усилительного тракта, в которых уровень сигнала меньше. При этом усилитель может оказаться в неустойчивом режиме работы и даже возбудиться. Возникновению такой ситуации препятствуют развязывающие схемы.

Типичная развязывающая схема представлена на рис. 7.34, б. Это RС-схема, в которой резистор R0 включен последовательно с резистором нагрузки усилителя, а емкость конденсатора С0 — между этими двумя резисторами и массой схемы. Развязывающие резисторы разделяют друг от друга нагрузочные резисторы, а конденсаторы эффективно шунтируют не только резистор R0, но и сопротивление источника питания. Сопротивление резистора R0 составляет обычно 10 % нагрузочного сопротивления усилителя, а реактивное сопротивление конденсатора С0 равно 0,1R0 на самой низкой частоте, пропускаемой усилителем.




Рис. 7.34 Двухкаскадный -усилитель без развязывающих (а) и с развязывающими (б) цепями

Глава 8 ОБРАТНАЯ СВЯЗЬ

Что такое обратная связь?

В общем, это связь в физических, биологических, экономических и других системах, основанная на обратном воздействии результата определенного явления на его причину. Явление обратной связи (ОС) наблюдается в природе повсеместно (например, регулировка температуры тела, давление крови) и является предметом исследований кибернетики.

На чем основана ОС в электронных схемах?

Обратная связь в электронных схемах основана на особом способе возбуждения, при котором выходной сигнал схемы оказывает обратное воздействие на ее входной сигнал. Иначе говоря, часть выходного сигнала, называемая сигналом обратной связи, поступает на вход схемы и суммируется с входным сигналом, в результате чего условия возбуждения схемы подвергаются изменению.

Рассмотрим структурную схему электронного усилителя без ОС и с ОС (рис. 8.1, а и б).




Рис. 8.1. Структурные схемы усилителей без обратной (а) и с обратной (б) связями


Усиление по напряжению усилителя без ОС равно отношению выходного напряжения к входному

Кu = U2/U1

Коэффициент усиления Кu часто называют коэффициентом усиления разомкнутой петли обратной связи, поскольку к усилителю не подсоединена цепь ОС. При подключенной цепи ОС (рис. 8.1, б) полное входное напряжение состоит из начального сигнала U1 и части β выходного сигнала, поданного обратно на вход. Сумма этих сигналов усиливается усилителем в Кu раз, так же как и в схеме на рис. 8.1, а, а на выходе возникает выходное напряжение U'2. Следует отметить, что выходные напряжения U2 и U'2 в двух схемах различны, так как в схеме с ОС изменился режим усиления. Напряжение, подведенное с выхода обратно на вход, составляет βfU'2, и поэтому полное входное напряжение усилителя равно U1 = U2 +βfU'2. Входное напряжение, умноженное на коэффициент усиления, равно выходному напряжению

U'2 = (U1 + βfU'2Кu

или после раскрытия скобок

U'2 = U1Кu + βfU'2Кu

После преобразований получим

U1Кu = U'2βfU'2Кu = U'2(1 — βfКu)

Отношение U'2/U1, обозначенное через К'u, представляет собой, результирующий коэффициент усиления схемы с обратной связью, называемый также коэффициентом усиления с замкнутой цепью ОС:

К'u = U'2/U1 = Кu/(1 — βfКu)

Полученная зависимость показывает, какому изменению подвергается коэффициент усиления схемы в результате применения ОС.

Далее увидим, что и другие свойства усилителя также изменяются и аналогично коэффициенту усиления зависят от члена (1 — βfКu), называемого коэффициентом обратной связи[21].

Что такое положительная обратная связь?

Обратная связь называется положительной, если фаза обратного напряжения, поданного с выхода на вход схемы, совпадает с фазой входного напряжения. При совпадении фаз обоих сигналов на входе усилителя эффективный входной сигнал увеличивается. Это означает, что коэффициент βf, определяющий, какая часть выходного напряжения подается снова на вход, положителен. В связи с этим в соответствии с ранее выведенной зависимостью усиление схемы с положительной обратной связью (ПОС) выражается следующей формулой:

К'u = Кu/(1 — βfКu)

Анализируя эту формулу, приходим к выводу, что увеличение коэффициента βf вызывает рост коэффициента К'u. Если коэффициент усиления усилителя без ОС равен 20, то при использовании ПОС (βf = 0,025) коэффициент усиления при замкнутой цепи ОС составит К'u = 40. Если коэффициент βf увеличивается и произведение βfКu приближается к единице, то коэффициент усиления стремится к бесконечности. Такой вывод следует из математической зависимости, практически, однако, такой случай невозможен. В схеме возникает генерация колебаний, а бесконечный коэффициент усиления означает, что генератор сам «поставляет» на вход сигнал, поддерживающий колебания. Положительная обратная связь является основой работы генераторов, причем условия генерации можно выразить следующим образом: схема работает как генератор, если ОС является положительной и достаточно сильной (βfКu = 1). чтобы поддерживать колебания. Если βfКu < 1, то в схеме наблюдается только рост усиления. Положительная связь такого типа, называемая иногда регенерирующей связью, используется очень редко (в частности, из-за увеличения искажений).

Что такое отрицательная обратная связь?

Отрицательная обратная связь (ООС) — это связь, при которой фаза напряжения, подведенного с выхода на вход схемы, является противоположной по сравнению с фазой входного напряжения.

Каково влияние ООС на усиление усилителя?

Отрицательная обратная связь вызывает уменьшение коэффициента усиления усилителя. Это следует из того, что в схеме с ООС поданная на вход часть выходного напряжения имеет фазу, противоположную фазе входного напряжения, и поэтому вычитается из него. В результате на входе усилителя действует меньшее напряжение, чем при отсутствии ООС. При этом выходное напряжение также имеет меньшее значение. Поскольку источник сигнала не охвачен цепью ОС, то при том же самом напряжении источника получаем меньшее выходное напряжение, т. е. усиление схемы уменьшается.

К аналогичному выводу приходим, анализируя основное выражение для коэффициента усиления схемы с ОС


В случае ООС знак коэффициента βf отрицателен. В связи с этим формула для коэффициента усиления усилителя с ООС изменяется и принимает следующий вид:


Предположим, что имеется усилитель, коэффициент усиления которого без ОС составляет 100, и вводится ОС βf = 0,1. Подставляя эти значения в уравнение, получаем

К'u = 100/(1 + 0,1·100) = 100/11 = 9,09

и, следовательно, значительное уменьшение коэффициента усиления.

Вызывает ли ООС расширение полосы пропускания усилителя?

Да. Использование ООС в усилителе вызывает уменьшение нижней граничной частоты fн и увеличение верхней граничной частоты fв. Новые граничные частоты f'н и f'в  зависят, как и коэффициент усиления, от выражения (1 + βfКu). Можно показать, что

f'н = fн/(1 + βfКu)

f'в = fв·(1 + βfКu)

Если усилитель имеет коэффициент усиления 40 и верхнюю граничную частоту 8 кГц, то после применения ООС с коэффициентом βf = 0,05 получаем новый коэффициент усиления, равный 40/(1 + 2) или 13,3, а также граничную частоту, равную 8·(1 + 2), т. е. 24 кГц. Видно, что коэффициент усиления усилителя снизился в 3 раза, но в такое же число раз возросла ширина полосы. Отсюда следует важный вывод, имеющий общий характер: произведение коэффициента усиления на ширину полосы усилителя (т. е. произведение GB или KΔf) является постоянной величиной.

Можно ли с помощью ООС формировать амплитудную характеристику усилителя?

Да. Отрицательная обратная связь позволяет получить такие амплитудные характеристики которые было бы трудно получить в схемах без ОС. Например, если хотим, чтобы амплитудная характеристика возрастала с ростом частоты, достаточно использовать цепь ОС, в которой коэффициент βf убывает с частотой. Вместе с уменьшением коэффициента βf уменьшается ОС и в результате усиление возрастает. Примером реализации такой схемы может служить усилитель, в котором сигнал ОС снимается с конденсатора в резистивно-емкостном делителе.

Оказывает ли влияние ООС нанелинейные искажения, помехи и шумы, вносимые усилителем?

Отрицательная обратная связь в принципе не улучшает отношение сигнал/шум, поскольку шумы или помехи, возникшие на входе схемы, уменьшаются в той же степени, что и полезный сигнал.

В то же время ООС уменьшает влияние паразитных сигналов, возникших внутри цепи ОС, в том числе гармоник. Влияние их уменьшается тем сильнее, чем ближе к выходу усилителя они появляются. Содержание гармоник hf усилителя с ОС и КГf — без ОС связаны зависимостью


Кроме того, ООС вызывает линеаризацию динамической характеристики усилителя.

Какое влияние оказывает ООС на стабильность усиления?

Отрицательная обратная связь уменьшает чувствительность коэффициента усиления к изменению параметров элементов, входящих в состав усилителя, питающих напряжении и внешних факторов. Эта чувствительность уменьшается в (1 + βfКu) раз. Иначе говоря, стабильность коэффициента усиления улучшается в (1 + βfКu) раз по сравнению со стабильностью усилителя без ООС. В предельном случае сильной ООС, когда βfКu >> 1, коэффициент усиления усилителя выражается простой зависимостью К'u = 1/βf. Из этой зависимости следует, что коэффициент усиления перестает зависеть от активных элементов, используемых в усилительном тракте, и, следовательно, не зависит от изменений их характеристик, свойств элементов (за исключением цепи ОС), а также колебаний напряжения питания.

Результирующий коэффициент усиления усилителя определяется лишь параметрами пассивных элементов цепи ОС. Если обеспечивается стабильность этих элементов, стабильность коэффициента усиления может быть очень высокой.

Влияет ли ООС на входное и выходное сопротивления усилителя?

Да, поскольку подключение к усилителю цепи ООС изменяет условия работы усилителя по входу и выходу. Свойства схемы с ОС, в том числе входное и выходное сопротивления, зависят от способа снятия обратного сигнала с выхода схемы и его подачи на вход. При рассмотрении схем с ОС увидим, как изменяются эти сопротивления.

Может ли ОС охватывать более одного каскада?

Да. Хотя чаще всего используется так называемая локальная связь, охватывающая один каскад. Во многих усилителях применяются цепи ОС, в которых сигнал ОС, полученный в последнем каскаде, подастся на первый каскад. Структурная схема такого усилителя показана на рис. 8.2. Пунктирной линией обозначены ответвления цепи, поскольку ОС может охватывать также и другие выбранные каскады в усилительной цепочке.



Рис. 8.2. Обратная связь, охватывающая несколько каскадов

Устойчивы ли схемы с ООС?

В принципе да, однако однозначно ответить на этот вопрос невозможно. Правильнее было бы сказать, что хорошо сконструированный и изготовленный усилитель с ООС является устойчивым. Рассматривая схемы с ООС в общем, можно сказать, что в определенных диапазонах частот существует возможность неустойчивости этих схем. Это следует из того, что коэффициент усиления усилителя является комплексным. Он характеризуется модулем (абсолютным значением) и углом фазового сдвига. В связи с этим нельзя говорить об ООС во всем диапазоне частот, усиливаемых усилителем.

В результате фазовых сдвигов в некоторых диапазонах частот, обычно на краях усиливаемой полосы, связь из отрицательной может стать положительной, и тогда усиление схемы возрастает. Если ОС является положительной и достаточно сильной, то усиление может возрасти до бесконечности, и тогда усилитель превращается в генератор, генерирующий собственные колебания. О таком усилителе говорят, что он нестабильный. Вероятность (опасность) нестабильности увеличивается с ростом ОС (большее произведение фактора обратной связи βfКu) и фазовых сдвигов в цепи ОС. Поэтому вероятность нестабильности больше в схемах с большим усилением и сильной связью, охватывающей несколько каскадов.

Борьба с нестабильностью усилителей в ООС заключается в ограничении числа каскадов, охваченных цепью ОС, до трех, а также на соответствующем формировании частотных характеристик усилителя. Главным принципом в этом случае является дополнительное уменьшение коэффициента усиления на границах, полосы пропускания, т. е. на тех частотах, для которых в результате фазовых сдвигов ООС превращается в ПОС. Тогда при меньших коэффициентах усиления, несмотря на ПОС, паразитные колебания не возникают, поскольку связь очень слабая.

Каковы преимущества и недостатки ООС?

Отрицательная обратная связь позволяет улучшить свойства схемы благодаря следующим преимуществам: уменьшение чувствительности усиления к изменению параметров элементов, режимов питания и внешних факторов; уменьшение нелинейных искажений; возможность формирования частотных характеристик, возможность изменения входного и выходного сопротивлений. К недостаткам ООС относятся уменьшение коэффициента усиления и возможность нестабильности схемы.

Как можно классифицировать цепи ООС?

Цепи ООС классифицируют исходя из способов снятия выходного сигнала и его подачи на вход.

По способу снятия выходного сигнала различают связь по напряжению, в которой выходной сигнал пропорционален выходному напряжению, и связь потоку, характеризующуюся пропорциональностью выходному току.

По способу подачи выходного сигнала на вход различают последовательную связь, при которой обратный сигнал подается последовательно со входным сигналом, и параллельную связь, при которой выходной сигнал цепи ОС вводится параллельно с входным сигналом.

В связи с этим можно выделить четыре основные цепи ООС: по напряжению, параллельного типа; по напряжению, последовательного типа; потоку, последовательного типа; потоку, параллельного типа.

Что такое усилитель с параллельной ООС по напряжению?

Усилительный каскад с ООС по напряжению параллельного типа показан на рис. 8.3.



Рис. 8.3. Усилитель с параллельной ООС по напряжению


Напряжение, возникающее на коллекторе, в схеме с ОЭ сдвинуто на 180° по отношению к напряжению, действующему на базе, и с помощью RfCf-цепочки снова подается на базу.

Конденсатор Cf разделяет лишь постоянные потенциалы, действующие на коллекторе и базе. Резистор Rf совместно с сопротивлением, включенным между базой и массой, а следовательно, учитывающий как резистор R1 и сопротивление источника, так и входное сопротивление транзистора, образует делитель обратного напряжения, который определяет коэффициент βf. Источники напряжения ОС и входного сигнала, поданного на базу через конденсатор C1, включены параллельно.

Из такого способа возбуждения и следует название цепи ОС: по напряжению параллельного типа. Для цепей этого типа характерно уменьшение входного и выходного сопротивлений. Параллельная связь по напряжению часто используется в качестве многокаскадной связи, примеры которой представлены на рис. 8.4, а и б. В схеме рис 8 4, а, состоящей из двух транзисторов, напряжение ОС снимается с вторичной обмотки трансформатора с встречной навивкой обмоток, что обозначено соответствующим расположением точек). Таким образом обеспечивается соответствующая полярность напряжения ОС.

В трехтранзисторной схеме (рис. 8.4, б) благодаря соответствующей фазе напряжения на выходе имеется возможность непосредственной подачи напряжения ОС (на вход схемы — прим. перев.).




Рис. 8.4. Многокаскадные усилители с параллельной ООС по напряжению:

а — двухкаскадный; б — трехкаскадный

Что такое усилитель с последовательной ОС по напряжению?

Типовая схема последовательной ОС по напряжению представлена на рис. 8.5.



Рис. 8.5. Усилитель с последовательной ООС по напряжению


Выходное напряжение, полярность которого противоположна напряжению на управляющей сетке лампы, делится с помощью делителя напряжения R1R2. Часть выходного напряжения, действующая на резисторе R2, является напряжением ОС. Это напряжение подводится к входной цепи благодаря соединению средней точки делителя с нижним концом вторичной обмотки трансформатора, т. е. последовательно с входным напряжением. Сумма этих двух напряжений является входным напряжением усилителя.

Другие схемы с ООС рассматриваемого типа показаны на рис. 8.6.

Во всех трех схемах напряжение ОС подается в цепь катода синфазно с управляющим напряжением. Поскольку эффективное входное напряжение усилителя является разностью переменных напряжений, действующих на сетке и катоде, условия питания аналогичны тем, которые имеют место при последовательном соединении двух источников переменного напряжения, из которых одно (соответствующее переменному напряжению на катоде) имеет противоположную полярность по отношению к другому.





Рис. 8.6. Усилители с последовательной ОС по напряжению:

а — двухламповая схема: б — двухламповая с трансформатором, не инвертирующим фазу; в — одноламповая с фазоинвертирующим трансформатором


Из рис. 8.6 следует, что в однокаскадном усилителе такой способ введения напряжения ОС возможен только при использовании трансформатора, переворачивающего (инвертирующего) фазу напряжения, действующего на аноде лампы. Для резистивного усилителя (рис. 8.6, б) необходимы два каскада. Если в схеме применяется трансформатор, то он не инвертирует фазу напряжения (рис. 8.6, в).

В транзисторных схемах число каскадов резистивного усилителя, обеспечивающее соответствующую фазу обратного напряжения, подводимого к резистору в цепи эмиттера, также должно быть четным.

Усилители со связью по напряжению последовательного типа характеризуются повышенным входным сопротивлением и пониженным выходным.

Является ли эмиттерный повторитель схемой с ООС?

Да, эмиттерный повторитель и его ламповый аналог катодный повторитель являются схемами с ООС по напряжению последовательного типа. Это следует из схемы (рис. 8.7).



Рис. 8.7. Эмиттерный повторитель


Выходное напряжение, возникающее на резисторе Rэ в цепи эмиттера, синфазно с входным напряжением. Все выходное напряжение вычитается из напряжения, действующего на базе, и в результате транзистор управляется разностью обоих напряжений. Анализ эмиттерного повторителя как схемы с ОС приводит к таким же результатам, которые получают при анализе схемы с ОК. Следовательно, усиление по напряжению повторителя меньше единицы; входное сопротивление велико, а выходное мяло.

Что такое усилитель с последовательной ОС по току?

Связь по току последовательного типа в схемном отношении является наиболее простым видом ООС. Для получения такой связи достаточно из усилителя удалить конденсатор, шунтирующий резистор в цепи эмиттера (рис. 8.8, а). Изменения тока коллектора, вызываемые переменным входным сигналом, создают на этом резисторе переменное напряжение, а поскольку этот резистор включен последовательно в цепь эмиттера, управляющее напряжение представляет собой разность между подводимым ко входу напряжением и переменным напряжением, действующим на резисторе. Достоинством последовательной связи по току является увеличение входного и выходного сопротивлении усилителя

Последовательную ООС по току часто применяют в качестве местной связи. Однако иногда ее используют в многокаскадных усилителях, как, например, в усилителе, представленном на рис. 8 8, б. Характерно, что в этой схеме помимо многокаскадной связи в первом и третьем каскадах через резистор Rf действуют также местные связи.



Рис. 8.8. Однокаскадный (а) и трехкаскадный (б) усилители с последовательной ОС по току

Что такое усилитель с параллельной ОС по току?

Усилитель с параллельной ООС по току представлен на рис. 8.9. Связь этого типа используется почти исключительно в транзисторных схемах, поскольку сильная нагрузка, вносимая цепью ОС на вход усилителя, несущественна из-за малого входного сопротивления транзистора. Параллельная связь по току вызывает снижение входного и повышение выходного сопротивления усилителя.

В рассматриваемой схеме изменения тока второго транзистора вызывают изменение напряжения па резисторе в цепи эмиттера. Это напряжение, фаза которого противоположна фазе входного напряжения, управляет первым транзистором. Коэффициент ОС определяет сопротивление резистора Rf.



Рис. 8.9. Усилитель с параллельной ОС по току

Какой усилитель называется операционным?

Операционным усилителем называется усилитель с очень большим коэффициентом усиления, предназначенным для работы с внешней цепью ООС, свойства которой и, определяют главным образом свойство всей схемы в целом. Наличие ООС обеспечивает стабильность работы усилителя, увеличивает его динамический диапазон по входу, а также положительно влияет на линейность и ширину полосы.

С точки зрения схемотехники операционный усилитель трактуется как «черный ящик» с определенными входами и выходами. Не вникая в детали устройства операционного усилителя, можно сказать, что он характеризуется однородной конструкцией и в настоящее время выпускается почти исключительно в виде интегральной микросхемы.

Помимо несомненного преимущества, которым являются малые габаритные размеры операционного усилителя, более существенно то, что все его элементы изготовляются в идентичных условиях в течение единого технологического процесса. Поскольку все элементы выполнены на общей подложке, параметры всех сравнимых элементов почти одинаковы, а из-за сильной тепловой связи создаются условия почти идеальной компенсации изменений параметров этих элементов в зависимости от температуры.

В состав операционного усилителя входят: дифференциальный усилитель, схема с высоким входным сопротивлением (например, выполненная на полевых транзисторах), схема Дарлингтона, эмиттерный повторитель, выходная схема с повышенной выходной мощностью и т. п. Все эти схемы обеспечивают получение большого коэффициента усиления, высокое входное и низкое выходное сопротивления и возможность симметричного входа. Операционные усилители в полупроводниковом исполнении отличаются непосредственными связями между каскадами, т. е. они являются усилителями постоянного тока.

Как графически изображается операционный усилитель?

Графическое изображение операционного усилителя показано на рис. 8.10.



Рис. 8.10. Условное графическое обозначение операционного усилителя


Обычный операционный усилитель имеет два входных зажима. Если зажим, обозначенный «+», заземлен, а входной сигнал подводится к зажиму «—», то происходит инвертирование фазы между входом и выходом. Поэтому зажим, обозначенный «—», является инвертирующим входом операционного усилителя. Наоборот, если заземлен зажим «—», а сигнал подан на зажим «+», то инвертирования фазы между входом и выходом не происходит. Поэтому зажим «+» называют также неинвертирующим входом.

Реже встречаются операционные усилители с одним входом и с симметричным выходом. Усилитель с одним входом можно трактовать как вариант усилителя с заземленным входом «+».

Поскольку в обычном операционном усилителе есть два независимых входа, из которых один инвертирующий, а другой неинвертирующий, имеется возможность подведения к входным зажимам разностного сигнала. Если на оба входа будут поданы два одинаковых сигнала, то сигнал на выходе будет равен нулю, а входной сигнал такого типа называется неразностным сигналом (общим). Большая буква К, расположенная в графическом изображении операционного усилителя, обозначает усиление недогруженного усилителя с разомкнутой цепью ОС.

Какими свойствами должен обладать идеальный операционный усилитель?

Идеальный операционный усилитель должен иметь следующие основные свойства: бесконечно большое усиление при разомкнутой цепи обратной связи (К —> ); бесконечно широкую полосу; бесконечно большое входное сопротивление (между входами, а также входами и массой); выходное сопротивление, равное пулю; выходное напряжение, равное пулю при возбуждении неразностным (общим) сигналом; идеальное дифференциальное усиление, а следовательно, бесконечно большое ослабление входного сигнала; независимость параметров от температуры.

Выпускают схемы с усилением 90 дБ, входным сопротивлением 1 МОм, затуханием паразитного сигнала 100 дБ, работающие в интервале температур от —55 до 125 °C. Ширина полосы пропускания не превосходит нескольких десятков мегагерц. Конечное значение ширины полосы и работа с ООС могут стать (из-за неустраненного фазового сдвига на высоких частотах) источником нестабильности операционных усилителей. Поэтому для предотвращения возникновения генерации применяется соответствующая частотная компенсация, задачей которой является уменьшение усиления в тех диапазонах частот, где велики фазовые сдвиги. Компенсация осуществляется с помощью RС-элементов, подключенных к соответствующим внутренним точкам операционного усилителя, выведенным наружу из схемы в процессе производства.

На чем основана работа операционных усилителей как усилительных схем?

На рис. 8.11 представлена простейшая схема операционных усилителей. Схема на рис. 8.11, а является усилителем, не инвертирующим фазу. Управляющее напряжение подводится к неинвертирующему входу, тогда как на инвертирующий вход подается часть выходного напряжения с помощью резистивного делителя R1R2. Коэффициент усиления схемы выражается следующим образом:

K = U2/U1 = (R1 + R2)/R1

и зависит только от сопротивлений резисторов в цепи ОС. Эти сопротивления должны быть выбраны таким способом, чтобы сопротивление их параллельного соединения было равно сопротивлению источника.

Используя в неинвентирующем усилителе R1 = , получаем коэффициент усиления по напряжению, равный единице. При этом схема работает, как повторитель напряжения (рис. 8.11, б). Из-за максимального входного сопротивления усилитель называют иногда сепаратором с единичным усилением.



Рис. 8.11. Основные схемы с операционными усилителями:

а — усилитель без изменения знака: б — повторитель напряжения; в — усилитель с изменением знака; г — разностный усилитель


На рис. 8.11, в представлен инвертирующий усилитель. Входной сигнал через резистор R1 подается на инвертирующий вход. На этот же вход через резистор R2 поступает с выхода напряжение ООС. Неинвертирующий вход заземляется. Коэффициент усиления схемы зависит от отношения сопротивлений резисторов R1 и R2

K = U2/U1 = — R2/R1 

и может быть меньше или больше единицы. В особом случае, когда R2R1 схема имеет коэффициент усиления, равный единице, и меняется лишь полярность выходного сигнала по сравнению с полярностью входного. Поэтому схему называют иногда схемой изменения знака.

Операционный усилитель может выполнять функцию разностного усилителя с ОС, служащего для вычитания или взаимной компенсации двух напряжений. При обеспечении отношения R2/R1 R4/R3  выходное напряжение должно быть пропорционально разности входных напряжений, подведенных от отдельных источников К инвертирующему и неинвертирующему входам (рис. 8.11. г).

Может ли операционный усилитель выполнять математические операции?

Да. Помимо уже упомянутых функций изменения знака и вычитания операционный усилитель может простым способом осуществлять операции сложения, интегрирования и дифференцирования, благодаря чему находит широкое, применение в аналоговых вычислительных машинах.

Суммирующий усилитель (рис. 8.12) является особым случаем усилителя, инвертирующего фазу. Подлежащие суммированию напряжения подаются на три входа, отдаленные от входа операционного усилителя резисторами R1R3. Усиление этой схемы для каждого из входов равно отношению сопротивления резистора R4 к сопротивлению соответствующего входного резистора.



Рис. 8. 12. Суммирующий усилитель


При подборе одинаковых сопротивлений R1 = R2 = R3 = R4 на выходе получают алгебраическую сумму напряжений. Примером использования суммирующей схемы может быть схема, микширующая несколько акустических сигналов, например сигналы с трех микрофонов, которые должны усиливаться общим усилителем мощности.

Интегрирующая схема, или интегратор, представлена на рис. 8.13. Как известно, интегрирующей схемой называется RС-фильтр нижних частот (рис. 8.13, а), у которого выходное напряженно пропорционально интегралу входного напряжения. Аналогичный эффект, но с усилением, получаем при использовании конденсатора в цепи ОС операционного усилителя (рис. 8.3, б).



Рис. 8.13. Интегрирующая схема:

а — RС-цепочка; б — схема с операционным усилителем


Дифференцирующая схема изображена на рис. 8.14. Дифференцирующей схемой является RC-фильтр верхних частот (рис. 8.14, а), характеризующийся тем, что напряжение на его выходе пропорционально производной входного напряжения. В отличие от интегрирующей в дифференцирующей схеме в петле ОС операционного усилителя находится резистор, а не конденсатор.



Рис. 8.14. Дифференцирующая схема:

а — RC-цепочка; б — схема с операционным усилителем

Может ли операционный усилитель работать как компаратор?

Да. Используя операционный усилитель без цепи ОС, можно получить схему сравнения двух напряжений, или компаратор. В идеальном усилителе при равенстве входных напряжений выходное напряжение равно нулю. Если подать на один из входов некоторое опорное напряжение, можно получить схему, сигнализирующую о том, является ли измеряемое напряжение больше или меньше опорного. Если подведенное к другому входу напряжение превышает опорное, то выходное напряжение имеет положительное значение, если меньшее — отрицательное.

Каковы другие применения операционных усилителей?

Операционные усилители находят применение в многочисленных устройствах. К числу известных схем, содержащих операционные усилители, относятся активные RС-фильтры, которые благодаря соответствующим образом сформированной петле ОС обеспечивают селективное усиление определенной полосы частот, ограничители напряжения, фазовращатели, генераторы прямоугольных и треугольных колебаний, преобразователи ток — напряжение и т. п.

Глава 9 РЕЗОНАНСНЫЕ УСИЛИТЕЛИ

Какие усилители называются резонансными?

Резонансными усилителями называются усилители, предназначенные для усиления сигналов, спектр которых сосредоточен вблизи средней частоты f0. На рис. 9.1 изображены амплитудные характеристики усилителей обоих типов. Амплитудная характеристика резонансного усилителя находится вблизи средней частоты f0, на которой коэффициент усиления по напряжению Ku/Кu0 является максимальным. Поэтому резонансный усилитель обладает свойством избирательного усиления определенной полосы частот. Отсюда происходит и аналогичное название резонансного усилителя — избирательный усилитель. Термин резонансный усилитель основывается на том, что для получения рассматриваемой амплитудной характеристики используется явление резонанса в контурах, состоящих из индуктивности и емкости. Контуры этого типа требуют настройки на определенную частоту.



Рис. 9.1. Амплитудные характеристики усилителей:

а — нерезонансного; б — резонансного

Где применяют избирательные усилители?

Как уже упоминалось, они используются в тех случаях, когда предназначенный для усиления сигнал обладает спектром, сосредоточенным вблизи некоторой частоты. Такого рода сигналы чаще всего получают при модуляции (см. гл. 11), заключающейся в «маркировке» колебания несущей частоты (сигнала высокой частоты f0) полезным модулирующим сигналом, например звуковым или изображения. Наложение полезного сигнала на несущее колебание используется в том случае, когда информация передается по кабельному или радиотракту на большие расстояния и для эффективной передачи необходимо использование высокой частоты.

Модулированный сигнал высокой частоты, попадающий на вход приемного устройства, обычно очень слабый, и в связи с этим его необходимо усиливать. Поэтому в, каждом приемнике, радиовещательном, телевизионном или радиолокационном, необходимо использовать резонансный усилитель, предназначенный для усиления несущего сигнала совместно со всем спектром частот, возникающих в процессе модуляции.

Что понимается под избирательностью резонансного усилителя?

Избирательность усилителя определяет его способность исключать нежелательные сигналы. В общем требуется, чтобы усилитель усиливал сигналы в определенной полосе частот, но в то же время не пропускал сигналы, находящиеся вне этой полосы. Если речь идет о максимальной избирательности, то идеальной была бы амплитудная характеристика усилителя прямоугольной формы. Помимо невозможности получить такую характеристику резкие спады характеристики не всегда приемлемы по другим причинам, в частности из-за сопутствующих им фазовых искажений.

Характеристика избирательности изображена на рис. 9.2.



Рис. 9.2. Характеристика избирательности резонансного усилителя


Ширину полосы пропускания В усилителя определяют точки по уровню 3 дБ спада усиления, отмечающие нижнюю и верхнюю граничные частоты, аналогично случаю нерезонансных усилителей. За этими точками характеристика монотонно спадает. На рисунке показана также идеальная прямоугольная характеристика избирательности.

Сторона прямоугольника, параллельная оси частот, обозначает полосу пропускания, в пределах которой усиление не меняется.

Стороны, перпендикулярные оси частот и отмечающие на этой оси граничные частоты, являются пределами, за которыми усиление равно нулю. За количественную меру избирательности, в особенности узкополосного усилителя, часто принимается коэффициент прямоугольности р, определяемый отношением ширины полосы пропускания при уменьшении коэффициента усиления на 3 дБ к ширине полосы при падении коэффициента усиления на 20 дБ. Часто избирательность определяется затуханием на несущих частотах соседних каналов, которые могут являться помехами усиливаемому сигналу.

Какой усилитель называется узкополосным, а какой широкополосным?

Ширина полосы частот, занимаемая усиливаемым сигналом, зависит от вида модуляции и полосы частот модулирующего сигнала. С этой точки зрения узкополосным резонансным усилителем является усилитель сигнала с модуляцией звуковым сигналом, а широкополосным — усилитель сигнала с модуляцией сигналом изображения.

Из-за сложностей выполнения резонансного усилителя принципиальное значение при отнесении усилителя к первой или второй группе имеет отношение средней частоты f0 к ширине полосы В. Когда это отношение достаточно велико (больше 10), усилитель считается узкополосным, в противном случае (f0/B < 6) — широкополосным. Более точно указать границу, разделяющую эти две группы усилителей, затруднительно.

В соответствии с указанным определением усилитель, работающий на средней частоте f0 = 600 МГц и имеющий полосу, соответствующую модулирующему сигналу изображения (В = 6 МГц), является узкополосным, а при f0 = 20 МГц — широкополосным. — Прим. ред.

Какими параметрами характеризуется резонансный усилитель?

Основными параметрами резонансного усилителя являются коэффициент усиления, форма частотных характеристик, избирательность, а также устойчивость и постоянство работы (рабочих характеристик).

Для узкополосных усилителей обычно несущественна фазочастотная характеристика, в то же время принципиальное значение имеют устойчивость и постоянство рабочих характеристик, которые обусловливают малое влияние внешних и внутренних факторов на коэффициент усиления и форму частотной характеристики.

В связи с этим площадь усиления используемых активных элементов реализуется не полностью. Коэффициент усиления не может быть очень высоким, исходя из возможности возникновения генерации либо уменьшения устойчивости схемы, вызванных наличием внутренних ОС в усилительных элементах.

В широкополосных усилителях проблема устойчивости является менее критичной, так как при постоянной площади усиления (произведения ) коэффициент усиления ограничен большой полосой пропускания. В то же время принципиальное значение имеет форма амплитудной и фазовой характеристик, определяющая свойства усилителя.

Избирательность в общем более важный параметр для узкополосных усилителей, чем для широкополосных.

Какие активные элементы применяют в резонансных усилителях?

Активными элементами в резонансных усилителях являются лампы, транзисторы и интегральные микросхемы. Каждый из этих элементов обладает определенными свойствами, которые существенным образом влияют на схемное и конструктивное решение усилителя. Широко применявшиеся до недавнего времени электронные лампы характеризовались достоинствами, непосредственно вытекающими из способа управления ими по напряжению. В диапазоне не очень высоких частот, где входное сопротивление лампы не зависит от времени пролета электронов и индуктивности выводов, лампа практически не вносит затухания в резонансные контуры, поскольку ее входное и выходное сопротивления велики. Свойства усилителя в этом случае зависят лишь от нагрузки (резонансных контуров).

Проблема устойчивости ламповых усилителей менее остра из-за меньшей «прозрачности» лампы вследствие небольших «обратных» емкостей. В настоящее время лампы почти полностью вытеснены транзисторами и используются только в мощных устройствах (например, в передатчиках).

Применяемые в резонансных усилителях транзисторы характеризуются высокой граничной частотой, большим значением крутизны S и относительно малой «обратной» емкостью. Однако эта емкость больше, чем у ламп, и поэтому транзисторные усилители, особенно узкополосные, требуют тщательного анализа устойчивости, что чаще всего вызывает ограничение допустимого значения коэффициента усиления.

Следует добавить, что высокая «прозрачность» усилителя может быть источником неприятностей при настройке схемы, поскольку отдельные контуры и транзисторы могут влиять друг на друга. В отличие от ламп транзисторы вносят в резонансные контуры относительно большое затухание, являющееся результатом малого входного сопротивления транзистора. В связи с этим резонансные контуры помимо формирования частотной характеристики должны также обеспечивать согласование для получения большого усиления. Необходимость выполнения этого условия влечет за собой специальную разработку резонансных контуров.

У широкополосных транзисторных усилителей дополнительную трудность при соответствующем выполнении усилителя создает тот факт, что параметры транзистора нельзя считать постоянными в широкой полосе частот. Возможные изменения параметров должны корректироваться внешними цепями

В современных резонансных усилителях применяются и интегральные микросхемы. Интегральные микросхемы, выполняющие функции усилителей высокой частоты, являются широкополосными (примерно до 100 МГц) апериодическими (нерезонансными) усилителями. Их роль ограничивается усилением сигнала, прошедшего через схему, состоящую из многих резонансных контуров и формирующую частотную характеристику.

Общей чертой активных элементов, применяемых в резонансных усилителях малых сигналов, является их работа в режиме класса А. Нелинейные искажения усилителен малы, поскольку сигналы на частотах гармоник, лежащих вне полосы пропускания, оказываются подавленными.

Какие типы нагрузок применяют в резонансных усилителях?

В резонансных усилителях, предназначенных для селективного усиления сигналов, применяют самые различные LC-резонансные контуры, выполняющие роль фильтрующих цепей. Резонансные фильтры могут быть типа двухполюсника (одиночный параллельный резонансный контур) или четырехполюсника. Последние могут быть одно-, двух- или многозвенными. В случае многокаскадных усилителей фильтры, являющиеся нагрузкой отдельных каскадов, могут быть настроены на одну либо на разные частоты. В первом случае усилитель называется синхронным, во втором — асинхронным или многорезонансным.

Индуктивные элементы фильтров (катушки индуктивности), работающие в диапазоне от 100 кГц до 100 МГц, выполняют в виде корпусов с навивкой, снабженных магнитным (ферритовым) сердечником, который служит для перестройки катушки. В диапазоне более высоких частот (от нескольких сотен мегагерц) применяют резонансные контуры с распределенными постоянными, такие как отрезки линий передачи, т. е. отрезки двухпроводных линий и объемные резонаторы.

Следует добавить, что в диапазоне частот ниже 100 кГц используют избирательные RС-цепи в схемах с ОС, поскольку индуктивные элементы, работающие в этом диапазоне частот, являются большими по размерам и трудновыполнимыми

Как можно классифицировать резонансные усилители?

Ответ на этот вопрос не прост, так как существует очень много критериев, согласно которым можно подразделить резонансные усилители. К ним относятся тип активного элемента, тип фильтрующей цепи, рабочий диапазон частот, способ получения заданной частотной характеристики, форма частотных характеристик, назначение усилителя и др. За главные критерии примем вид фильтрующей цепи и способ получения заданной частотной характеристики. В связи с этим резонансные усилители будем подразделять на усилители с одиночными резонансными контурами и двух- или многорезонансными полосовыми фильтрами, а также синхронные и многорезонансные усилители.

Какой резонансный усилитель наиболее простой?

Наипростейшей схемой резонансного усилителя является схема с одиночным резонансным контуром, включенным непосредственно в выходную цепь активного элемента. На рис. 9.3 представлены ламповый и транзисторный усилительные каскады, нагруженные параллельным резонансным контуром. По виду они не отличаются от нерезонансного усилительного каскада. Единственное отличие заключается в использовании резонансного контура в качестве нагрузки.




Рис. 9.3. Ламповый (а) и транзисторный (б) усилительные каскады с одиночным резонансным контуром


Так же как и для нерезонансного усилителя, коэффициент усиления каскада зависит от крутизны характеристики активного элемента S и сопротивления нагрузки Z (Кu = S·Z). Поскольку крутизна имеет постоянное значение, вид коэффициента усиления от частоты определяется исключительно зависимостью сопротивления Z от частоты.

На рис. 9.4 показана зависимость сопротивления контура Z, а следовательно, и коэффициента усиления каскада от частоты. Из рисунка видно, что зависимость аналогична характеристике параллельного резонансного контура, состоящего из индуктивности L и параллельно подключенной к ней емкости С. Эта емкость состоит из емкости конденсатора и суммы емкостей: выходной активного элемента, входной емкости следующего каскада, собственной емкости катушки индуктивности и емкостей рассеяния.



Рис. 9.4. Зависимость сопротивления Z параллельного резонансного контура от частоты


Максимум усиления имеет место на резонансной частоте контура (f0 = 1/2π√(L·C)) и составляет

Кu = — 0LQэф

где ω0 = 2πf0 — резонансная круговая частота; Qэф — результирующая добротность контура. Знак минус обозначает инверсию фазы выходного напряжения на 180° относительно входного.

Из приведенной зависимости следует, что усиление прямо пропорционально результирующей добротности контура Qpeз. Результирующая добротность контура Qpeз равна собственной добротности резонансного контура, уменьшенной из-за затухания, связанного с выходным сопротивлением активного элемента, и подключенного дополнительного гасящего сопротивления.

От результирующей добротности Qpeз зависит также избирательность усилителя. Из рис. 9.5 следует, что чем больше добротность, тем «острее» резонансная кривая и тем усилитель более избирателен.



Рис. 9.5.Амплитудная характеристика усилителя с одиночным резонансным контуром при разных значениях его добротности Q


Ширина полосы пропускания усилителя В или 2Δf соответствующая снижению усиления на 3 дБ, обратно пропорциональна добротности Qэф:

2ΔfВ = f0/Qpeз

Следовательно, чем больше добротность Qpeз, тем уже полоса пропускания усилителя, но одновременно больше усиление. Подключая параллельно резонансному контуру сопротивление R, можно регулировать его добротность и тем самым влиять на ширину полосы пропускания усилителя. При этом не следует забывать, что коэффициент усиления также подвергается изменению. В связи с этим в случае широкополосных усилителей номинальное усиление на каскад получается меньшим.

Можно ли усилитель с одиночным контуром непосредственно сопрягать со следующим каскадом?

Помимо сложностей, связанных с разделением постоянных напряжений, действующих во входной и выходной цепях, не всегда можно подвести к следующему каскаду все переменное напряжение, действующее на резонансном контуре. Для ламп это возможно. Используя конденсатор связи с достаточно большой емкостью, такой, чтобы его емкостное сопротивление было малым на рабочей частоте усилителя, мы передаем все переменное напряжение, действующее на резонансном контуре, на сетку следующего каскада (рис. 9.6).



Рис. 9.6. Усилитель с одиночным резонансным контуром, связанный со следующим каскадом


Входное сопротивление лампы достаточно велико, особенно в диапазоне частот до 30 МГц, и не влияет отрицательно на добротность контура.

Для транзисторных усилителей ситуация совершенно иная. Транзистор как элемент, управляемый током, характеризуется низким входным сопротивлением[22]. Соединение коллектора с базой транзистора следующего каскада с помощью конденсатора с пренебрежимо малым реактивным сопротивлением вызвало бы значительное затухание в резонансном контуре, уменьшение его добротности и в результате расширение полосы пропускания усилителя с одновременным уменьшением коэффициента усиления. Поэтому в транзисторных усилителях необходимо согласовать высокое выходное сопротивление транзистора с низким входным сопротивлением последующего каскада. Задачу согласующих цепей выполняют модифицированные резонансные контуры, которые не только устанавливают требуемую среднюю частоту f0 и соответствующую ширину полосы, но также трансформируют сопротивление.

На рис. 9.7 представлены три способа согласования сопротивления в транзисторных усилителях. В схеме на рис. 9.7, а использован емкостный делитель. Результирующая емкость последовательного соединения конденсаторов С1 и С2 является емкостью контура, причем в емкости конденсатора С2 следует учитывать входную емкость последующего резонансного каскада. Отношение суммы емкостей конденсаторов С1 и С2 к емкости конденсатора С1 определяет коэффициент передачи, с которым входное сопротивление трансформируется в цепь коллектора. Аналогично действуют и другие схемы с тон разностью, что в схеме рис. 9.7, б коэффициент передачи определяется положением отвода на катушке индуктивности, а в схеме рис. 9 7, в — коэффициентом связи между первичной и вторичной обмотками КонденсаторыСб характеризуются большой емкостью и служат только для разделения постоянных напряжений, действующих на коллекторе и базе следующего транзистора.





Рис. 9.7. Три способа согласования сопротивления в транзисторных усилителях:

а — с емкостным делителем; б — с отводом от катушки индуктивности; в — трансформаторный

Как работает простейший резонансный усилитель с двухзвенным фильтром?

Транзисторный усилительный каскад с двухзвенным фильтром представлен па рис. 9.8, а. От схемы на ряс. 9.3 он отличается использованием вместо одиночного резонансного контура двухзвенного фильтра, состоящего из двух связанных резонансных контуров.

Связью контуров называется такое состояние контуров, при котором возможна передача энергии из одного контура в другой.

В рассматриваемом случае энергия из первого контура передается во второй посредством взаимной индуктивности М. Оба контура настроены на среднюю частоту f0. В результате взаимной связи между контурами каждый из них воздействует на другой, перестраивает его и вносит затухание. Напряжение на выходе контура, являющееся одновременно выходным напряжением всего фильтра, зависит не только от частоты, как в случае одиночного резонансного контура, но также от степени связи контуров.

Количественной мерой связи контуров является коэффициент связи, который для контуров, связанных взаимной индуктивностью М, выражается зависимостью


где М — взаимная индуктивность; L1 — индуктивность первичного контура, L2 — индуктивность вторичного контура. Если коэффициент связи мал, то амплитудная характеристика усилителя подобна характеристике одиночного резонансного контура.

С увеличением коэффициента связи вершина характеристики становится все более плоской и при определенном значении коэффициента связи, называемом оптимальным, становится максимально плоской. Оптимальное значение коэффициента связи зависит от добротности первого и второго контуров и для равных добротностей Q1 = Q2 = Q выражается формулой χопт = 1/Q. Увеличение связи свыше оптимального значения вызывает уменьшение выходного напряжения на резонансной частоте f0 и возникновение выше и ниже этой частоты локальных резонансов, называемых «горбами» характеристики.

На рис. 9.8, б показан вид частотных характеристик усилителя с двухзвенным фильтром для случая одинаковых добротностей контуров и разных коэффициентов связи. При χ/χопт = 1 кривая максимально плоская и коэффициент усиления на частоте f0 наибольший.

Для значений х/хопт > 1 кривые становятся двугорбыми, причем максимальное усиление, равное максимальному усилению при хопт, соответствует горбам характеристики. Чем сильнее связь, тем больше удаление горбов от резонансной частоты f0. Напряжение, действующее на втором контуре фильтра, включенном как нагрузка транзисторного усилителя (рис. 9.8, а), может быть подведено к следующему транзисторному каскаду. Однако, как и в случае одиночного резонансного контура, следует использовать емкостный делитель, позволяющий согласовать низкое входное сопротивление транзистора с сопротивлением контура.




Рис. 9.8. Схема (а) и амплитудные характеристики (б) резонансного усилителя с двухзвенным фильтром

Какие преимущества у двухзвенного фильтра?

Основным преимуществом двухзвенного фильтра по сравнению с одиночным резонансным контуром является его большая избирательность и форма частотной характеристики вблизи резонансной частоты. Одиночный резонансный контур не имеет плоской части характеристики, тогда как двухзвенный фильтр с оптимальной связью вблизи резонансной частоты характеризуется постоянной амплитудой напряжения на выходе. Поэтому двухзвенный фильтр в значительно большей степени, чем одиночный резонансный контур, аппроксимирует прямоугольную частотную характеристику.

Дополнительным преимуществом, не всегда используемым при проектировании усилителя с двухзвенным фильтром, является большая площадь усиления усилителя. Можно допустить, что коэффициент усиления усилителя с двухзвенным фильтром с оптимальной связью при одинаковой ширине полосы в √2 раз больше, чем для усилителя с одиночным резонансным контуром. Следует добавить, что при разных добротностях первого и второго контуров фильтра площадь усиления может увеличиться в 2 раза, если Q1 >> Q2 или Q2 >> Q1. Важным свойством фильтров с несимметричными контурами (Q1 не равно Q2) является то, что максимально плоская характеристика при оптимальной связи xопт не соответствует максимальной амплитуде выходного напряжения, имеющей место при критической связи xкр < xопт. Для симметричных контуров (Q1 = Q2xкр = xопт.

В узкополосных усилителях площадь усиления из-за стабильности усилителя не имеет решающего значения, и поэтому в них чаще применяют симметричные контуры. Наоборот, в широкополосных усилителях, для которых очень важно значение площади усиления, применяют также контуры с неодинаковыми добротностями, отличающимися одна от другой в 2–5 раз.

Только ли с помощью взаимной индуктивности М можно осуществить связь контуров в фильтре?

Нет. Связь с помощью взаимной индуктивности М является лишь одним из методов связи контуров в фильтре. Эта связь может быть заменена индуктивной или емкостной связью. На рис. 9.9 показаны схемы двухзвенных фильтров с различными типами связи.




Рис. 9.9. Различные способы связи в двухзвенных фильтрах:

а, б — индуктивная; в, г— емкостная


Свойства всех этих схем аналогичны, если их коэффициенты связи одинаковы. Очевидно, что формулы, определяющие коэффициенты связи, зависят от типа связи. Например, в схеме на рис 9,9, в коэффициент связи определяется как

x = C12/√(C1·C2)

Резисторы R1 и R2 определяют добротности контуров, соответственно первого и второго.

Выбор типа связи диктуется в первую очередь конструктивными соображениями.

Применяют ли в резонансных усилителях многозвенные фильтры?

Да. Помимо простейших двухзвенных фильтров применяют также более сложные трех- и четырехзвенные фильтры. Они позволяют получать более высокую избирательность усилителя и обеспечивают плоскую или равномерную частотную характеристику в относительно большом диапазоне частот. На рис. 9.10 показан трехзвенный фильтр с емкостной связью и четырехзвенныи фильтр с индуктивной связью. К недостаткам многозвенных фильтров следует отнести сложную настройку




Рис. 9.10. Многозвенные фильтры

а — трехзвенный фильтр с емкостной связью; б — четырехзвенный фильтр с индуктивной связью

Как изменяется ширина полосы пропускания усилителя в результате каскадного соединения отдельных ступеней?

Для получения большого коэффициента усиления часто возникает необходимость каскадного соединения резонансных ступеней. Как и в случае нерезонансных усилителей, каскадному соединению усилительных ступеней сопутствует уменьшение общей ширины полосы пропускания усилителя. Это очевидно, поскольку частотные характеристики отдельных ступеней подвергаются перемножению, и если усиление на краях полосы одного каскада составляет 0,707 максимального (что соответствует падению усиления на 3 дБ), то в случае двух одинаковых ступеней, включенных каскадно, усиление на данной частоте составит лишь 0,707·0,707 = 0,5, т. е. падению усиления до 0,707 соответствует меньшая частота.

Сужение полосы зависит от формы характеристик соединяемых каскадно ступеней. Оно различно для усилителей с одиночными резонансными контурами и усилителей с двухзвенными фильтрами. Чем больше крутизна скатов частотной характеристики, тем меньше сужение полосы при каскадном включении. Если бы можно было выполнить усилитель с идеально прямоугольной характеристикой, то при каскадном соединении ступеней сужения полосы не наблюдалось бы.

Какой усилитель называется синхронным и каковы его свойства?

Синхронным усилителем называют многокаскадный усилитель, полученный путем каскадного соединения нескольких ступеней. Все контуры в нем настроены на одну частоту. В синхронных усилителях результирующее усиление является произведением коэффициентов усиления отдельных каскадов на резонансной частоте f0, а ширина полосы подвергается уменьшению в зависимости от вида использованных контуров и числа ступеней. Так, у одиночных резонансных контуров ширина полосы двухкаскадного усилителя составляет 0,64 полосы одиночного каскада, а ширина полосы трехкаскадного усилителя составляет лишь 0,51 полосы одиночного каскада. Отсюда следует, что при заданной требуемой полной ширине полосы пропускания полоса каждого каскада должна быть соответственно больше.

Аналогично можно показать, что у двухзвенных фильтров с одинаковыми добротностями контуров и оптимальной связью ширина полосы пропускания двухкаскадного и трехкаскадного усилителей составляет соответственно 0,80 и 0,71 полосы одиночного каскада. И в этом случае при заданной требуемой полной ширине полосы пропускания ширина полосы каждого каскада должна быть большей.

Из рассмотренных свойств синхронных усилителей следует, что они могут быть применены в том случае, когда нет необходимости использовать полную площадь усиления каждого каскада. Поэтому метод синхронной настройки применяется для узкополосных усилителей.

Что такое асинхронный усилитель?

Асинхронным усилителем обычно называют многокаскадный усилитель, в котором отдельные каскады не одинаковы, как у синхронного усилителя, а отличаются друг от друга частотой настройки, а иногда и шириной полосы. Усилители, настроенные асинхронно, позволяют получить большее усиление и лучшую избирательность, чем усилители, настроенные синхронно, и, кроме того, дают возможность формирования частотной характеристики другим способом. Последнее свойство имеет большое значение для широкополосных усилителей, которые в зависимости от применения могут иметь частотные характеристики плоские, равномерно волнистые или максимально соответствующие линейной фазе.

Метод асинхронной настройки применяют в основном для широкополосных усилителей исходя из возможности получения большего усиления при заданной ширине полосы, чем при использовании метода синхронной настройки.

Как работает асинхронный усилитель?

Рассмотрим простейший асинхронный усилитель, состоящий из двух усилительных каскадов (рис. 9.11).



Рис. 9.11. Двухкаскадный асинхронный усилитель


Каждый каскад содержит резонансный контур, настроенный на разную частоту по принципу асинхронной настройки. Исходя из существования в асинхронном усилителе по крайней мере двух резонансных частот усилители этого типа называют многорезонансными усилителями или усилителями с расстроенными контурами. На рис. 9.12 представлены амплитудные характеристики отдельных каскадов и результирующая характеристика всего усилителя.



Рис. 9.12. Амплитудные характеристики асинхронного усилителя с двумя расстроенными контурами:

1, 2 — отдельных каскадов; 3 — результирующая


Каждый каскад усиливает сигнал в определенной полосе частот относительно частоты настройки резонансного контура. При соответствующем выборе ширины полос контуров результирующая характеристика имеет плоскую вершину и форму, соответствующую амплитудно-частотной характеристике одного каскада с двухзвенным фильтром с оптимальной связью.

Аналогичным образом может быть выполнен трехкаскадный усилитель. В этом случае результирующая характеристика (рис. 9.13) образуется путем суммирования характеристик трех резонансных контуров, один из которых с меньшей добротностью настроен на среднюю частоту усилителя, а два других с большей добротностью на частоты, лежащие симметрично ниже и выше этой частоты. Результирующая характеристика соответствует амплитудно-частотной характеристике одного каскада с трехзвенным фильтром.



Рис. 9.13. Амплитудные характеристики асинхронного усилителя с тремя расстроенными контурами:

1, 2, 3 — отдельных каскадов; 4 — результирующая характеристика


На основании рассмотренных случаев можно сделать вывод, что в многорезонансном усилителе для получения симметричной амплитудно-частотной характеристики отдельные каскады должны быть сгруппированы в пары с одинаковой добротностью и резонансными частотами, симметричными относительно средней частоты fэ. При нечетном числе каскадов один из них должен быть настроен на среднюю частоту f0.

В результате расстройки контуров в многокаскадном усилителе получают усилитель, полосовые свойства и форма частотной характеристики которого соответствуют каскадам с двух-, трех- и n-звенными фильтрами. Что касается усиления, то оно больше, чем усиление синхронной схемы, имеющей ту же самую ширину полосы пропускания.

Как работает усилитель с расстроенными двухзвенными фильтрами?

При каскадном включении усилительных каскадов с двухзвенными фильтрами происходит, как известно, уменьшение результирующей ширины полосы пропускания усилителя, в связи с чем для получения заданной ширины полосы каждый каскад должен иметь соответственно бóльшую полосу. Это отрицательно влияет на общий коэффициент усиления всего усилителя.

Для поддержания на максимальной уровне произведения коэффициента усиления на ширину полосы пропускания применяют метод различного формирования характеристик отдельных каскадов, так чтобы при их пересчете результирующая характеристика была максимально плоской. По аналогии с многорезонансными усилителями (с расстроенными контурами) этот метод называют методом расстройки полосовых фильтров, хотя он основан не на настройке отдельных фильтров на разные частоты, а лишь в обеспечении у них разного затухания.

Способ получения максимально плоской амплитудной характеристики из трех различных характеристик отдельных каскадов в трехкаскадном усилителе с двухзвенными фильтрами показан на рис. 9.14. Видно, что в одном из каскадов фильтр имеет оптимальную связь, в другом — сильнее оптимальной, в третьем — более слабую, чем оптимальная.



Рис. 9.14. Амплитудные характеристики с тремя двухзвенными фильтрами при различной связи:

1 — X < Xопт; 2 — X = Xопт; 3 — X > Xопт; 4 — результирующая характеристика

Что такое усилители высокой и промежуточной частот?

Усилители высокой и промежуточной частот являются полосовыми усилителями, применяемыми в приемных устройствах, например в радиоприемнике, телевизоре, радиолокационном приемнике и т. п., которые работают на принципе преобразования частоты (см. гл.11).

Усилитель высокой частоты служит для усиления слабых сигналов, принятых антенной, и поэтому должен иметь малые шумы. Ширина полосы пропускания усилителя высокой частоты может быть различной в зависимости от назначения приемника: от нескольких килогерц в радиовещательном приемнике сигналов с амплитудной модуляцией до нескольких мегагерц в телевизионном приемнике. Усилители высокой частоты обычно являются настраиваемыми.

Усилители промежуточной частоты служат для усиления сигнала промежуточной частоты, полученной в результате преобразования сигнала высокой частоты. Основными параметрами этого усилителя являются коэффициент усиления и избирательность. Последняя обеспечивается путем соответствующего подбора фильтров. Например, в телевизионном приемнике — это многозвенные фильтры или расстроенные двухзвенные фильтры, которые являются нагрузкой отдельных каскадов многокаскадного усилителя.

Что такое резонансный усилитель, работающий в режиме класса С?

Резонансный усилитель класса С является высокочастотным усилителем мощности, предназначенным прежде всего для усиления несущей частоты передатчиков. В зависимости от типа передатчика усилители класса С обеспечивают мощности от нескольких ватт до нескольких сотен киловатт. Нагрузкой усилителя обычно служит соответствующим образом согласованная передающая антенна.

Усилитель класса С может быть создан на транзисторе или на лампе, причем выбор одного из этих активных элементов зависит от вида устройства и заданной выходной мощности. Самые мощные усилители обычно выполняют на лампах.

Как работает усилитель класса С?

Схема усилителя мощности класса С похожа на схему резонансного усилителя напряжения. Рассмотрим ламповую схему, представленную на рис. 9.15.



Рис. 9.15. Усилитель мощности класса С


Анодное напряжение подводится через дроссель высокой частоты, а резонансный контур развязан от анода конденсатором. Передача мощности в нагрузку осуществляется обычно на принципе использования индуктивной связи. Одновременно эта связь служит для энергетического согласования нагрузки с лампой.

Принципиальная разница между усилителем напряжения и усилителем мощности класса С состоит в том, что лампа в усилителе мощности работает при большем отрицательном напряжении на сетке, чем напряжение отсечки анодного тока. В результате, если на сетку подастся переменное напряжение, анодный ток будет протекать в виде импульсов, длительность которых меньше половины периода частоты напряжения, подведенного к сетке. Из-за того что резонансный контур настроен на частоту возбуждающего усилитель напряжения, усиливаться будет лишь основная составляющая возбуждающего напряжения. Поскольку высшие гармоники этого напряжения сильно подавляются резонансным контуром, напряжение на контуре имеет синусоидальную форму, а его частота равна частоте возбуждающего напряжения.

Отрицательное постоянное напряжение на сетке обычно получают в схеме так называемого «динамического минуса», возникающего благодаря протеканию сеточного тока, который заряжает конденсатор Сс. Конденсатор Сс разряжается через резистор Rc. Если постоянная времени RcCc велика по сравнению с периодом управляющего напряжения, постоянное отрицательное напряжение на сетке почти равно амплитуде управляющего напряжения.

Какое основное преимущество усилителя класса С?

Основным преимуществом усилителя класса С является его высокий КПД, равный отношению выделенной в нагрузке мощности к мощности, подводимой от источника питания.

Высокий КПД усилителя класса С является результатом того, что анодный ток протекает импульсами в моменты, когда мгновенное падение напряжения на лампе мало. Коэффициент полезного действия тем выше, чем меньше та часть периода, в течение которой протекает ток. Если время протекания тоже очень мало, КПД может приближаться к 100 %. Одновременно снижается отдаваемая выходная мощность. Поэтому обычно выбирается компромисс между высоким КПД и отдаваемой мощностью, в связи с чем получаемые на практике значения КПД лежат в пределах 60–80 %.

Высокий КПД усилителя класса С имеет существенное значение при больших мощностях, когда КПД 1 % может соответствовать киловаттам подведенной к усилителю мощности.

Что такое умножитель частоты?

Умножитель частоты — разновидность усилителя класса С, в котором анодный резонансный контур настроен на другую частоту, отличную от частоты возбуждающего напряжения. Поскольку импульсы анодного тока усилителя класса С содержат много гармоник, путем соответствующей настройки анодного контура, например на вторую или третью гармонику, можно получить на выходе усилителя полезную мощность с удвоенной или утроенной частотой возбуждающего напряжения.

Умножители частоты часто используются в измерительных генераторах, устройствах радиосвязи и передатчиках.

Глава 10 ГЕНЕРАТОРЫ

Что такое генератор?

Генератор — это устройство, служащее для генерирования переменных колебаний без подведения извне какого-либо возбуждающего сигнала. По существу генератор преобразует энергию постоянного тока в энергию переменного тока[23].

На какие основные группы можно разделить генераторы?

Генераторы в зависимости от формы генерируемого колебания могут быть разделены на две основные группы. Различают генераторы синусоидальных и несинусондальных колебаний (например, прямоугольных, треугольных колебаний и т. п.). Последние известны под названием релаксационных генераторов.

Какими параметрами характеризуется генератор?

К наиболее важным параметрам генератора относятся частота, ее стабильность, форма генерируемого колебания, мощность колебаний. Иногда имеет значение диапазон перестройки генератора. Не все параметры одинаково важны; значение каждого из них зависит от применения генератора. Например, генератор, задающий несущую частоту радиопередатчика, является генератором малой мощности, но с высокой стабильностью. В свою очередь генератор, предназначенный для нагрева, например, индуктивной или электрической печи, обычно имеет большую мощность, около 10–20 кВт, но требования к стабильности в этом случае невысокие.

Как можно разделить генераторы синусоидальных колебаний?

Принципиальный критерий — вид электрического контура, определяющего частоту колебаний. Существуют генераторы с LC- и -элементами, а также электромеханические генераторы. В зависимости от механизма возникновения колебаний и цепи ОС генераторы подразделяются на генераторы с внешней и внутренней ОС, т. е. с использованием отрицательного сопротивления некоторых активных элементов, например тетрода или туннельного диода.

Последние применяют относительно редко. В зависимости от вида используемого активного элемента генераторы делятся на ламповые и транзисторные.

Как действует простейший генератор на резонансном контуре?

Простейшим генератором является сам контур, состоящий из индуктивности L и емкости С и не взаимодействующий непосредственно с активным элементом. В LC-контурах при соответствующих условиях могут возникать свободные собственные колебания, осцилляции. Основой работы генератора такого типа является эффект накопления энергии резонансным контуром.

Рассмотрим резонансный (колебательный) контур, представленный на рис. 10.1, а. Предположим, что конденсатор С заряжен до напряжения батареи Б. Допустим, что конденсатор разряжается через катушку индуктивности после размыкания ключа К1 и замыкания ключа К2. При разряде конденсатора через катушку энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. В результате явления самоиндукции в катушке возникает электродвижущая сила, которая поддерживает ток в контуре и перезаряжает конденсатор. В свою очередь конденсатор снова разряжается через катушку, и процесс повторяется сначала. Если бы контур был идеальным (без потерь), колебания в контуре имели бы чисто синусоидальную форму и длились бы бесконечно долго.

В действительности катушка выполнена из провода и имеет некоторое сопротивление потерь R. Это сопротивление при протекании тока вызывает потерю мощности. Иначе говоря, часть электрической энергии контура преобразуется в резисторе в тепловую энергию и не может быть использована другим способом. Поскольку в процессе каждой разрядки часть энергии теряется, конденсатор уже не может зарядиться до первоначального напряжения. В результате заряд, а отсюда и максимальное напряжение на конденсаторе уменьшаются с каждым периодом. Поэтому в контуре возникают колебания в виде затухающей синусоиды (рис. 10.1, б). Когда вся подведенная к контуру энергия преобразуется в резисторе в тепловую энергию, колебания прекращаются.

Частота колебаний в контуре в первом приближении равна его резонансной частоте f = 2π√(L·C). Амплитуда колебаний зависит от энергии, подведенной вначале к контуру, а скорость убывания (затухания) — от сопротивления потерь в контуре.



Рис. 10.1. Колебательный контур (а) и форма затухающих колебаний (б)

Как действует LC-генератор с внешней ОС?

В LC-генераторах всегда используются свойства параллельного резонансного контура, в котором при соответствующих условиях могут возникнуть затухающие колебания. Явление затухания, вызванное сопротивлением в контуре, возникают уже в первом периоде работы, как только через катушку начинает протекать ток. Поэтому амплитуда напряжения во втором периоде уже меньше, чем начальная амплитуда.

Для получения постоянной амплитуды колебаний (или поддержания незатухающих колебаний в контуре) необходимо в каждый период пополнять энергию, теряемую в контуре, от внешнего источника питания с помощью усилителя с ПОС.

Ко входу усилителя, взаимодействующего в составе генератора, подводится часть сигнала, действующего в резонансном контуре. Полярность этого сигнала должна быть подобрана таким образом, чтобы выходной сигнал усилителя был в фазе с сигналом в резонансном контуре. Усиленное напряжение подводится непосредственно к резонансному контуру. Усилитель должен поставлять энергию в контур только в течение небольшой части периода. Эту задачу лучше всего выполняет усилитель класса С. Во время коротких периодов проводимости активного элемента протекающий через усилитель ток дает энергию, обеспечивающую требуемые условия работы контура. Легко видеть, что усилитель (транзистор) действует как ключ, автоматически размыкаемый и замыкаемый генерируемым напряжением.

Как уже указывалось в гл. 8, ПОС должна быть такой, чтобы удовлетворялось условие баланса амплитуд. Следует добавить, что переход к работе в классе С должен происходить автоматически с помощью RС-цепи во входной цепи, для того чтобы было возможно самовозбуждение колебаний.

Что такое генератор с индуктивной ОС?

Принципиальная схема генератора с индуктивной ОС показана на рис. 10.2.



Рис. 10.2. Принципиальная схема генератора с индуктивной ОС


Характерной особенностью этого генератора являются две катушки, из которых одна совместное подключенным параллельно конденсатором образует колебательный контур. Конденсатор может быть подключен к катушке в цепи базы либо в цепи коллектора. Вторая катушка является катушкой связи, ее задача состоит в передаче части энергии с выхода на вход схемы. Обратная связь в схеме должна быть положительной. Будет ли ОС положительной, зависит от относительного направления навивки катушек. В общем можно принять, что если катушки навиты в одном направлении, то одна из них должна иметь обращенные концы. Степень ОС зависит от взаимной индуктивности М между катушками. Рост M, а следовательно, и коэффициента связи χ вызывает увеличение ОС.

При подведении к схеме напряжения питания начинает заряжаться конденсатор резонансного контура и в схеме возникают колебания. После возбуждения колебаний схема автоматически переходит в режим работы в классе С.

Работу в классе С обеспечивает схема динамического смещения базы, содержащая резистор R1 и конденсатор С1. Если амплитуда колебаний возрастает, то увеличивается постоянное напряжение на конденсаторе С1 и уменьшается в последующих периодах угол (время) протекания тока коллектора. Генератор работает в установившемся режиме, если потери в контуре уравновешиваются выходной мощностью переменного тока в транзисторе. Потери в рассматриваемой схеме включают в себя потери в транзисторе, катушке в цепи коллектора, резонансном контуре и ограничивающем сопротивлении. Последним является эмиттерный резистор, который ограничивает до безопасного значения ток в первый момент после включения схемы.

Схема дополнительного смещения базы стабилизирует выходное напряжение генератора. Частота колебании в генераторе с индуктивной ОС близка к резонансной частоте контура и может изменяться путем изменения емкости конденсатора. Процесс изменения частоты колебаний путем изменения значений элементов контура называется перестройкой генератора. Выходное напряжение генератора обычно снижается посредством конденсатора связи, подключенного к коллектору транзистора, либо третьей обмотки трансформатора.

Каковы схемные варианты генератора с индуктивной ОС?

Существует много схемных разновидностей генератора с индуктивной ОС, отличающихся размещением резонансного контура, способом питания, схемой работы активного элемента, самим активным элементом и т. п

На рис. 10.3 изображено несколько вариантов схем. Особого внимания заслуживает схема на рис. 10.3, а, в которой база транзистора питается переменным напряжением с части обмотки катушки резонансного контура. Такое включение предотвращает демпфирование резонансного контура транзистором.

Некоторые из представленных схем запитываются последовательно, другие параллельно. В схеме с последовательным питанием постоянная составляющая тока коллектора протекает через одну из катушек генератора. При параллельном питании постоянная составляющая тока коллектора не протекает через катушки, так как она отделена с помощью шунтирующего конденсатора Сш. Последовательно с коллектором включен высокочастотный дроссель, который обеспечивает большое сопротивление между коллектором и массой. В схеме на рис. 10.3, б подстроечный конденсатор находится в цепи коллектора. Недостатком такого решения является высокий потенциал конденсатора относительно массы. В этом случае подстроечный конденсатор и его ось должны быть изолированы от монтажной платы (шасси).






Рис. 10.3. Схемы генераторов с индуктивной ОС:

а — с контуром в цепи базы транзистора; б — с перестраиваемым контуром в цепи коллектора и последовательным питанием; в — схема с параллельным питанием; г — генератор по схеме с ОБ; д — ламповый генератор с параллельным питанием

Что такое трехточечный генератор с индуктивной ОС?

Схема подобного генератора изображена на рис. 10.4, а. Это одна из наиболее часто используемых схем. Трехточечный генератор с индуктивной ОС характеризуется использованием в настраиваемом контуре разделенной катушки L. Отсюда происходит и другое название трехточечного генератора — генератор с разделенной индуктивностью. Из эквивалентной схемы (рис. 10.4, б) следует, что одна часть катушки (L2 + М) включена между базой и массой, а другая (L1 + М) — между коллектором и массой. Следовательно, обе части катушки L совместно с конденсатором С образуют четырехполюсник, соединяющий коллектор с базой. Можно показать, что сдвиг фазы между напряжением на коллекторе и напряжением на базе или между входом и выходом четырехполюсника составляет 180°[24], что необходимо для поддержания колебаний. Усиление в схеме зависит от коэффициента передачи по току транзистора. Обычно отвод выполняется на 1/10 длины всей катушки. Остальные элементы схемы на рис. 10.4 выполняют те же функции, что и генератор с индуктивной ОС. Резисторы R1, R2 и конденсатор С1 образуют цепь смещения. Конденсатор С2 заземляет по переменному току отвод катушки, а резистор Rа цепи эмиттера ограничивает ток коллектора до безопасного максимального начального значения. Несмотря на последовательное питание, в схеме имеется высокочастотный дроссель, который разделяет резонансный контур и положительный зажим источника напряжения питания.

При сохранении высокой добротности катушки частота генератора выражается формулой f0 =1/(2π√(L·C)) и, следовательно, не зависит от расположения вывода на катушке индуктивности.



Рис. 10.4. Трехточечный генератор с индуктивной ОС:

а — электрическая схема; б — эквивалентная схема включения контура


Другие варианты трехточечного генератора с индуктивной ОС показаны на рис. 10.5.






Рис. 10.5. Трехточечные схемы генераторов с индуктивной ОС:

а — с последовательным питанием и заземленным перестраиваемым конденсатором; б — с дополнительным выводом катушки; в — на полевом транзисторе; г — на электронной лампе


Схема на рис. 10.5, а также питается последовательно, однако перестраиваемый конденсатор заземлен, поэтому в отличие от предыдущей схемы нет необходимости в его полной изоляции от массы.

В схеме на рис. 10.5, б используется дополнительный отвод на катушке, чтобы препятствовать демпфирующему действию транзистора и, следовательно, получить большую добротность. Трехточечные генераторы с индуктивной ОС на полевом транзисторе и электронной лампе представлены соответственно на рис. 10.5, в, г.

Что такое трехточечный генератор с емкостной ОС?

Емкостная трехточечная схема генератора (рис. 10.6, а) несколько отличается от индуктивной. Разница заключается в том, что в емкостной трехточечной схеме в качестве делителя используется конденсатор, а не катушка индуктивности. Подобный генератор также называют генератором с разделенной емкостью. На практике разделение конденсатора сводится к использованию двух последовательно включенных конденсаторов. Из эквивалентной схемы (рис. 10.6, б) следует, что четырехполюсник, включенный между коллекторов и базой и инвертирующий фазу выходного напряжения, состоит из индуктивности L, и конденсаторов C1 и С2.Действующее на конденсаторе С1 напряжение подводится к базе после усиления предназначено для поддержания колебаний в схеме.



Рис 10.6. Трехточечный генератор с емкостной ОС:

а — электрическая схема; б — эквивалентная схема включения контура


Емкость конденсатора C1 обычно равна емкости конденсатора С2. Частота колебаний зависит от индуктивности и эквивалентной емкости Сэкв = C1C2/(C1 + С2) согласно формуле f0 = 1/(2π√(L·Сэкв)).

Перестройка генератора возможна путем одновременного изменения емкости обоих конденсаторов, поскольку отношение этих емкостей должно поддерживаться постоянным. Существуют также схемы с одиночным подстроечным конденсатором.

Другие варианты трехточечного генератора с емкостной ОС изображены на рис. 10.7. Схема на рис. 10.7, а содержит одиночный подстроечный конденсатор. Конденсаторы С1 и С2 обеспечивают соответствующий делитель напряжения. Схема с параллельным питанием представлена на рис 10.7, б. Конденсатор C1 в этой схеме используется учитывая механическую симметрию схемы.



Рис. 10. 7. Трехточечные схемы генераторов с емкостной ОС:

а — с одиночным перестраиваемым контуром; б — на полевом транзисторе; в — на электронной лампе

В чем разница между генератором по схеме Клаппа и трехточечным генератором с емкостной связью?

Разница между этими генераторами минимальна. Генератор Клаппа (рис. 10.8) является модификацией трехточечного генератора с емкостной ОС, заключающийся в использовании подстроечного конденсатора С3, включенного последовательно с катушкой индуктивности контура. Конденсаторы С1 и С2 образуют емкостный делитель напряжения, как в генераторе по трехточечной емкостной схеме.



Рис. 10.8. Генератор Клаппа

Что таксе генератор с резонансными контурами на входе и выходе?

Схема такого генератора показана на рис. 10.9. Он содержит два резонансных контура: один в цепи базы транзистора, другой — в цепи коллектора. Связь между контурами устанавливает результирующая емкость между коллектором и базой. Эта емкость состоит из обратной емкости транзистора и дополнительной внешней емкости. Колебание в схеме возникает в том случае, когда оба резонансных контура будут иметь сопротивление индуктивного характера. Это означает, что резонансные частоты контуров несколько выше, чем резонансная частота колебаний схемы. С учетом этого свойства схему можно свести к схеме трехточечного генератора с индуктивной связью.



Рис. 10.9. Генератор с резонансным контуром на входе и выходе

Какие факторы вызывают нестабильность частоты?

На нестабильность частоты генераторов влияют много факторов, наиважнейшими из которых являются температура, влажность, напряжение питания, недостаточная добротность контура и механические воздействия. Изменения температуры вызывают механические напряжения и деформации в катушке индуктивности и конденсаторе, которые имеют непосредственное влияние на параметры этих элементов. Аналогично влажность, влияя в основном на диэлектрическую проницаемость диэлектрика конденсатора, вызывает изменение его емкости.

Колебания напряжения питания вызывают изменения частоты, связанные с изменением параметров транзисторов, ламп и других активных элементов, а также изменение амплитуды колебаний и связанную с этим возможность появления нелинейных эффектов. Можно показать, что стабильность частоты генератора в большой мере зависит от добротности Q резонансного контура. Если добротность контура слишком мала из-за неправильного конструирования катушки индуктивности либо уменьшилась из-за нагрузки генератора слишком малым сопротивлением, то при этом увеличивается нестабильность частоты.

Изменения частоты генератора могут происходить также под влиянием внешних механических сил, например ударов или вибраций. Вибрации могут вызывать модуляцию частоты генератора.

Как можно повысить стабильность частоты генератора?

Стабильность частоты генератора можно повысить путем устранения или уменьшения факторов, вызывающих нестабильность. В связи с этим следует использовать стабилизацию напряжения питания, обеспечить высокую добротность колебательного контура, изменив каскад, развязывающий нагрузку от генератора, и защитить схему от механических воздействий, используя, например, антивибрационную подвеску некоторых элементов. Кроме того, можно обеспечить температурную компенсацию, заключающуюся в использовании элементов контуров с такими зависимостями параметров от температуры, что изменение одного компенсируется изменением другого. Иногда достаточно использовать элементы с малыми температурными коэффициентами. LC-генератор, выполненный без специальных мер повышения стабильности частоты, имеет стабильность около 10-3 — 10-4. При тщательном исполнении можно получить стабильность порядка 10-5.

На чем основана автоматическая регулировка амплитуды колебаний?

Амплитуда колебаний генератора, особенно перестраиваемого, не является постоянной, а подвержена колебаниям в зависимости от питающего напряжения, диапазона перестройки и т. п. Для поддержания постоянной амплитуды на выходе генератора применяют специальные схемы, обычно называемые схемами автоматической регулировки амплитуды (АРА).

Принцип работы схемы АРА представлен на рис. 10.10.



Рис. 10.10. Структурная схема автоматической регулировки амплитуды


Сигнал Генератора усиливается с помощью усилителя, а затем детектируется. Полученное напряжение используется для изменения рабочей точки генератора путем изменения тока эмиттера, а следовательно, и крутизны характеристики транзистора Из-за наличия регулирующего напряжения, зависящего от выходного сигнала, можно обеспечить такие условия работы генератора, при которых каждое изменение уровня выходного сигнала за счет ООС будет автоматически вызывать изменение впротивоположном направлении и поддерживать тем самым выходной уровень как можно более постоянным.

Постоянная времени цепи регулировки определяется фильтром нижних частот, включенным между детектором и генератором. Следует добавить, что генератор, работающий по схеме с АРА, является генератором, модулируемым сигналом ошибки.

Что такое кварцевый генератор?

Кварцевый генератор является генератором синусоидальных колебаний, относящимся к группе электромеханических генераторов. В генераторах этого типа частота определяется кварцем, связанных с электрической схемой генератора.

Для кварцевого генератора резонатором является пластинка, вырезанная соответствующим образом из кристалла кварца. Кварц относится к кристаллическим материалам, обладающим пьезоэлектрическими свойствами. Пьезоэлектрический эффект состоит в том, что механические напряжения, вызванные воздействием внешних сил, приводят к появлению на пластинке, выполненной из кварца, электродвижущей силы Наблюдается также обратное явление, основанное на том, что подводимое напряжение создает механические напряжения. Если в посеребренной с двух сторон и расположенной в соответствующей оправе кварцевой пластинке посредством электрического импульса вызвать механические колебания, то на ее обкладках возникает переменное электрическое напряжение. Частота изменений этого напряжения равна частоте собственных колебаний пластинки. Пластинка ведет себя аналогично резонансному контуру. Добротность Q этого резонансного контура очень велика — десятки тысяч. Благодаря высокой добротности кварцевого резонатора стабильность частоты кварцевых генераторов очень высока.

На рис. 10.11 изображена простая схема кварцевого генератора. Эта схема очень похожа на схему генератора с резонансными контурами на входе и выходе с той разницей, что входной резонансный контур заменен кварцем.



Рис. 10.11. Кварцевый генератор с кварцем в цепи базы


Механизм возникновения колебаний в схеме таков: произвольная электрическая флуктуация (результат включения питающих напряжений) вызывает возникновение колебаний в резонансном контуре и передачу их через емкость C1 на кварц. Возбуждаемая таким образом кварцевая пластина управляет (посредством возникающего на ее зажимах переменного напряжения) напряжением на базе транзистора. Это напряжение после его усиления поддерживает колебания в цепи коллектора.

От чего зависят свойства кварцевого резонансного контура?

Свойства кварцевого резонансного контура зависят прежде всего от типа среза, размеров и условий работы.

Кристалл кварца (кристаллическая модификация кремнезема — SiО2) имеет вид шестигранной пирамиды (рис. 10.12).



Рис. 10.12. Кристалл кварца


Из его середины вырезают пластины кварца. Различают различные типы срезов кристалла в зависимости от того, как ориентирована пластинка относительно осей кристалла. Как видно из рис. 10.12, существуют три главные взаимно перпендикулярные оси, обозначаемые буквами X, Y и Z. Ось Z называется оптической осью кристалла. Три оси X, проходящие через каждую пару противолежащих вершин шестиугольника, — электрические оси, а три оси Y, проходящие через каждую пару противоположных граней, — механические. Если пластинка кварца вырезана таким образом, что ее наибольшая поверхность перпендикулярна оси X, это означает, что использован срез X. Соответственно существует срез Y. Срезы под углом к оси Z обозначаются двумя буквами, например АТ, ВТ и др. От типа среза зависит пригодность кварца для работы в различных диапазонах частот, температурный коэффициент частоты, возможность использования в фильтрах и т. п. Например, пластины кварца, полученные из среза X, обладают отрицательным температурным коэффициентом. Это означает, что если температура окружающей среды возрастает, частота генератора убывает. Пластины кварца, полученные из срезов под углом к оси Z, в некотором интервале изменений температуры имеют нулевой температурный коэффициент.

Если требования к стабильности частоты генератора велики, то кварц должен быть помещен в термостат, внутри которого поддерживается постоянная температура. При этом можно получить стабильность лучше, чем 10-6 (даже 10-8). На основе таких генераторов создаются эталоны (стандарты) частоты и кварцевые часы.

Кварцевая пластина может быть представлена в виде эквивалентной схемы (рис. 10.13, а). Это схема, в которой механические параметры кварца заменяются электрическими эквивалентами. Так, индуктивность Lm — электрический эквивалент массы, емкость Сm — гибкости (упругости); сопротивление Rm представляет противодействие перемещению, вызываемому трением в кристалле. Емкость С0 является емкостью между проводящими пластиками, присоединенными к кварцу. В схеме имеются два резонанса: последовательный и параллельный (рис. 10.13, б).




Рис. 10.13. Эквивалентная схема кварцевого контура (а) и соответствующее ей изменение реактивной проводимости (б)


Резонансные частоты кварца обратно пропорциональны его размерам и толщине. Размеры типового кварца на частоту 428 кГц — 2,75х3,33х0,636 см. Параметры элементов эквивалентной схемы составляют: С0 = 5,8 пФ; Сm = 0,042 пФ, Lm = 3,3 Гн; Q = 23 000.

Кварцевые пластины (кварцевые резонаторы) изготавливаются на частоты от 2 кГц примерно до 35 МГц. Возможно также изготовление кварцев, работающих на более высоких частотах, даже до 150 МГц. Однако в этом случае генераторы работают на так называемых «обертонах», т. е. на частотах колебаний, почти в точности равных гармоническим частотам основной частоты.

Что такое кварцевый генератор Пирса?

Схема генератора Пирса представлена на рис. 10.14. Генератор Пирса является разновидностью генератора с емкостной связью. Кварцевый резонатор работает на частоте, близкой к частоте параллельного резонанса, и имеет индуктивное реактивное сопротивление Два конденсатора С1 и С2 образуют емкостной, делитель.

Генератор Пирса очень удобен для применения в многоканальных передатчиках, стабилизированных кварцем, поскольку не требует подстройки контура при смене кварца.



Рис. 10.14. Генератор Пирса

Что такое -генератор?

Это генератор, в котором не содержатся резонансные контуры LC, а цепь, определяющая генерируемую частоту, состоит только из элементов RC. Различают RС-генераторы с фазосдвигающими и мостовыми схемами. Обычно RС-генераторы используются для получения синусоидальных колебаний с частотами от долей герц (например, 0.01 Гц) до нескольких десятков килогерц. Обычно верхний предел частоты не превышает 300 кГц. RС-генераторы характеризуются хорошей стабильностью, легко перестраиваются и позволяют получать колебания с очень низкими частотами. Реализация LC-генератора, генерирующего колебания очень низкой частоты, является не простым делом из-за трудностей, связанных с изготовлением катушки с очень большой индуктивностью.

Что такое -генератор с фазосдвигающей цепью?

Схема генератора показана на рис. 10.15.



Рис. 10.15. RС-генератор с фазосдвигающей цепью


В состав генератора входит резистивный усилительный каскад, а также трехсекционная лестничная RС-цепочка, включенная между выходом и входом усилителя. Эта цепочка, находящаяся в петле ОС, вносит фазовый сдвиг между выходным и входным напряжениями. Одним из условий возникновения колебаний в схеме является фазовый сдвиг между этими напряжениями, составляющий 180°. В рассматриваемой цепи подобная ситуация может возникнуть только на одной частоте. Действие цепи легко можно понять, если принять во внимание, что каждая RС-секция является простым фазовращателем, вносящим в первом приближении сдвиг фазы 60° на рабочей частоте схемы. Три такие секции вносят, следовательно, требуемый сдвиг фазы 180°. Поэтому ПОС является избирательной, и в связи с этим колебания имеют синусоидальную форму.

Фазосдвигающая цепь вносит достаточно заметное затухание, и поэтому коэффициент усиления транзистора должен быть соответственно большим. Для RС-цепи, состоящей из трех секций, коэффициент усиления должен составлять не менее 29. Тогда будет выполнено также второе условие возникновения колебаний — условие баланса амплитуд.

При одинаковых сопротивлениях резисторов R и емкостей конденсаторов С частота колебаний генератора рассчитывается по формуле f = 1/(2π√6·RC). Для изменения частоты колебаний достаточно изменить сопротивление или емкость в фазосдвигающей цепи.

Что такое -генератор с мостом Вина?

Общая структурная схема генератора мостового типа представлена на рис. 10.16. При соответствующем выборе параметров элементов моста (R1 = R2; R4 < R3) напряжение на диагонали АВ моста находится в фазе с напряжением на диагонали СО. Напряжение UAB управляет двухкаскадным усилителем без инверсии фазы (фазовый сдвиг 360°), выход которого является источником сигнала, подключаемого к одной диагонали моста.



Рис. 10.16. Структурная схема генератора мостового типа


Если коэффициент усиления достаточен, то в схеме выполняются условия, необходимые для возникновения колебаний. Поскольку схема является широкополосной и не выделяет какой-либо частоты, генерируемое напряжение не имеет синусоидальной формы.

Если схема должна генерировать напряжение некоторой определенной частоты, то ветвь моста с резисторами R1 и R2 должна быть заменена избирательной схемой. Схема такого типа, образующая совместно с резисторами R3 и R4 мост Вина, представлена на рис. 10.17, а. Резистор R1 заменен последовательной RС-цепочкой, а резистор R2 — параллельной RС-цепочкой. Условие соответствующей фазы напряжения, возбуждающего усилитель, выполняется только на одной частоте f = 1/(2πRC). На других частотах имеет место меньшее напряжение UАВ, а его фаза отличается от желаемой.

Схема генератора с мостом Вина изображена на рис. 10.17, б. Резистор R4 в мостике заменен лампой накаливания с вольфрамовой нитью. Благодаря нелинейной вольт-амперной характеристике лампы накаливания достигается автоматическая регулировка усиления и в результате — постоянная амплитуда колебаний.

Генератор с мостом Вина можно легко перестраивать с помощью сдвоенного конденсатора переменной емкости, включенного в схему вместо постоянных конденсаторов с емкостью С.




Рис. 10.17. Мост Вина (а) и схема генератора с мостом Вина (б)

Как получают несинусоидальные колебания?

Несинусоидальными колебаниями обычно называют колебания, форма которых отличается (сильнее или слабее) от синусоидальной. Однако в импульсной технике название «несинусондальные» относится к колебаниям, принципиальным образом отличающимся от синусоидальных, например к прямоугольным или треугольным.

Существуют два способа получения несинусоидальных колебаний. Рассмотрим первый способ. Синусоидальное колебание сначала подвергается ограничению (иногда многократному), обычно сопровождаемому усилением. В результате получается колебание, более или менее близкое к прямоугольному, которое затем подвергают линейному формированию в дифференцирующих или интегрирующих цепях. Таким способом, повторяя некоторые процессы формирования и придавая им разную последовательность, можно получить колебания различной формы (рис. 10.18): прямоугольные, пилообразные, трапецеидальные, импульсные и т. п.



Рис. 10.18. Формы колебаний, полученные из синусоидальных колебаний с использованием линейных и нелинейных цепей


Второй способ состоит в непосредственном генерировании несинусоидальных колебаний. Общий принцип генерирования несинусоидальных колебаний, упрощенно представлен на рис. 10.19.



Рис. 10.19. Общий принцип генерирования несинусоидальных колебаний


Конденсатор С заряжается через сопротивление от источника постоянного напряжения при разомкнутом ключе К и разряжается через ключ К, когда последний замыкают. Ключом может быть, например, лампа или транзистор. Размыкание ключа соответствует закрытому состоянию, замыкание — открытому. Перевод лампы или транзистора в эти состояния осуществляется с помощью импульсов, подведенных извне, либо в результате процессов, происходящих в схеме самого генератора. Полученное таким образом пилообразное колебание напряжения может быть использовано для получения других колебаний в зависимости от схемы и ее параметров. Например, в релаксационных генераторах изменение напряжения на заряженном и разряженном конденсаторе может быть использовано для получения на выходе прямоугольного колебания. Линейность изменения напряжения на конденсаторе зависит от постоянной времени цепи заряда и уровня напряжения, до которого заряжается конденсатор. В общем можно сказать, что такое изменение носит экспоненциальный характер.

Что такое релаксационные генераторы?

Это генераторы, создающие колебание с высоким содержанием гармоник на принципе ПОС, действующей в широкой полосе частот. В генераторах синусоидальных колебаний ОС имеет избирательный характер, зависящий от резонансного контура. Чем больше добротность контура (т. е. чем уже его полоса), тем форма синусоидального колебания ближе к идеальной (содержит меньше гармоник).

Резонансная частота контура (обычно типа LC) определяет частоту колебаний синусоидального генератора. В релаксационных генераторах, работающих далеко от границы возникновения колебаний в контуре, частота определяется временем заряда и разряда конденсатора в RС-цепи. Самым простым типом релаксационного генератора является блокинг-генератор.

Как работает блокинг-генератор?

Блокинг-генератор «происходит» от генератора с индуктивной ОС. Сильная ПОС между входом и выходом в однокаскадной схеме осуществляется путем применения трансформатора, переворачивающего фазу на 180.

На рис. 10.20 представлена ламповая схема блокинг-генератора.

Схема работает следующим образом. После подачи напряжения питания начинает протекать анодный ток. Скачок напряжения в момент включения передается во вторичную обмотку и вызывает «возбуждение» сетки в направлении открывания. Это вызывает дальнейший рост анодного тока до того момента, пока не появится сеточный ток. После этого происходит падение анодного тока и вызванное этим падение напряжения на сетке, приводящее к запиранию лампы. Во время протекания сеточного тока происходит зарядка конденсатора С, который затем разряжается через R до уровня, соответствующего напряжению открывания лампы, при котором лампа снова начинает пропускать анодный ток, и процесс повторяется снова. Изменение напряжения на аноде и сетке лампы представлено на рис. 10.20, а.




Рис. 10.20. Схемы блокинг генератора на лампе (а) и транзисторе (б)


Транзисторная схема блокинг-генератора показана на рис. 10.20, б. Работа схемы происходит почти так же, как и в ламповом варианте. Большой ток базы вызывает зарядку конденсатора С, разряжающегося затем в период запирания транзистора до уровня, при котором транзистор начинает снова проводить. Время открытого состояния транзистора зависит главным образом от трансформатора. Время запирания — от постоянной времени RС-цепи базы. Следовательно, в данном генераторе частота повторения импульсов определяется постоянной времени RC, которую можно регулировать, например, с помощью потенциометра.

Какую схему называют нестабильным генератором?

Нестабильным генератором является любой генератор, не имеющий устойчивого состояния. После каждого переброса в генераторе возникают самопроизвольно (без внешнего воздействия) такие изменения, которые вызывают новый переброс, в свою очередь вызывающий следующий переброс, и т. д. Нестабильный генератор часто называют автогенератором. Таким нестабильным генератором является рассмотренный выше блокинг-генератор. Существуют также и другие типы нестабильных генераторов.

Что такое автоколебательный мультивибратор?

Мультивибратор — это релаксационный генератор, состоящий из двух каскадов RС-усилителей. Второй каскад переворачивает фазу колебания, подводимого снова к первому каскаду. Таким образом создается ПОС без использования трансформатора, как это имеет место в случае блокинг-генератора.

На рис. 10.21 изображен автоколебательный мультивибратор по крестообразной схеме, т. е. анод первого каскада связан с сеткой второго каскада, а анод второго каскада — с сеткой первого каскада.



Рис. 10.21. Схема лампового мультивибратора и формы напряжения на электродах


Вторая связь является ПОС. Поскольку «идеальной» симметрии обоих плеч цепи не бывает, положим, что в начальный момент лампа Л1 закрыта и на конденсаторе С1 имеется большой отрицательный заряд. На ее аноде действует в этом случае полное напряжение питания. В это время лампа Л2 отперта. Такое состояние не может сохраняться долго, так как конденсатор С1 разряжается через RC1, в результате лампа Л1 начинает проводить. При этом напряжение на аноде лампы Л1 уменьшается, возникает увеличение отрицательного напряжения на сетке лампы Л2 и рост напряжения на аноде лампы Л2 и в результате увеличение напряжения на сетке лампы Л1. Поэтому ток лампы Л1 еще больше возрастает, а ток лампы Л2 убывает. В конце концов лампа Л2 запирается. С этого момента напряжение на сетке лампы Л1 быстро убывает, а на сетке лампы Л2 увеличивается. Когда оно достигает напряжения отсечки, лампа Л2 отпирается, а лампа Л1 переходит в состояние запирания, и весь процесс повторяется снова.

Автоколебательный мультивибратор на транзисторе по схеме со связью «крест-накрест» изображен на рис 10.22. Схема работает таким же образом, как и с лампами. Однако следует подчеркнуть, что из-за явлений, происходящих в полупроводнике, и их инерционности форма получаемых колебаний несколько отличается от формы колебаний в ламповой схеме. В рассматриваемой схеме транзистор работает в режиме переключения из состояния непроводимости в состояние насыщения либо наоборот. Подобная работа транзистора обсуждалась в гл. 4.



Рис. 10.22. Схема транзисторного мультивибратора

Как работает автоколебательный мультивибратор в схеме с катодной (эмиттерной) связью?

На рис. 10.23 изображена схема мультивибратора на лампах с катодной связью.



Рис. 10.23. Схема мультивибратора с катодной связью


Связь между анодом лампы Л1 и сеткой лампы Л2 такая же, как у мультивибратора со связью «крест-накрест». Однако ПОС с лампы Л2 на Л1 осуществляется с помощью общего катодного резистора Rк. Он одновременно устанавливает смещение па сетках обеих ламп.

Работа схемы происходит следующим образом. Предположим, что в момент включения (начальный момент) проводит лампа Л2. Через некоторое время начинает отпираться лампа Л1. Напряжение на ее аноде убывает, что вызывает падение напряжения на сетке лампы Л2, которая запирается. В дальнейшем проводит лампа Л1. Когда конденсатор связи разрядится настолько, что напряжение на сетке лампы Л1 возрастет выше напряжения отсечки (напряжения запирания), лампа Л2 начинает проводить ток. При этом увеличиваются протекающий через резистор Rк ток и падение напряжения на этом резисторе, увеличивается отрицательное напряжение на сетке лампы Л1 и уменьшается ток лампы. Это приводит к увеличению напряжения на аноде лампы Л1 передаваемого через конденсатор на сетку лампы Л2. В результате возрастает анодный ток лампы, что приводит лампу Л1 в состояние запирания. Таким образом, произошел возврат к начальному состоянию, после чего весь процесс повторяется снова.

В транзисторной схеме ПОС осуществляется с помощью общего резистора, находящегося в эмиттерных цепях. Это схема мультивибратора с эмиттерной связью. Подобная схема дает возможность легко осуществлять работу транзисторов без захода в область насыщения (например, путем соответствующего подбора резисторов), благодаря чему можно получить лучшие времена переключения, чем при работе с насыщением.

Как регулируется частота колебаний в автоколебательном мультивибраторе?

Частота колебаний в мультивибраторе зависит от времени, проходящего с момента возникновения максимального отрицательного напряжения на сетке до момента, когда это напряжение достигает значения, при котором через лампу может протекать ток, т. е. значения, приближенно равного напряжению отсечки. Этот период времени зависит от постоянных напряжений в схеме, а также от постоянных времени сеточных цепей, определяющих скорость изменения напряжения на конденсаторах. Постоянная времени сеточной цепи одной лампы определяет запертое состояние другой и наоборот.

Полный период колебаний мультивибратора зависит от обеих постоянных времени. Поэтому изменение периода колебаний мультивибратора, а также изменение отношения времени отпирания и времени запирания можно осуществлять с помощью регулировки постоянных времени. Обычно это делают с помощью переменных резисторов, изменяющих значения постоянной времени RC.

Если в схеме обеспечивается идентичность соответствующих друг другу элементов, изменений напряжений и токов, а также равенство времен запирания обеих ламп (транзисторов), то схема мультивибратора называется симметричной. При этом колебание на выходе имеет форму, называемую меандром. В несимметричном мультивибраторе постоянные времени должны быть различными и при этом получают прямоугольное колебание, у которого длительность импульса отличается от длительности паузы между импульсами.

Что такое одностабильные (ждущие) генераторы?

Это генератор с двумя состояниями, причем лишь одно пассивное (состояние ожидания) является устойчивым состоянием, в котором генератор может находиться неограниченно долго. Под влиянием запускающего импульса, подведенного к генератору извне, может наступить скачкообразное изменение состояния, которое вызывает в генераторе процессы, приводящие к полному противоположному перебросу, после чего наступает возврат в исходное (устойчивое) состояние до следующего запускающего импульса, под влиянием которого схема может выполнить снова один цикл колебаний.

Работу в ждущем режиме можно получить путем модификации мультивибратора, подавая на сетку одной из ламп или базу одного из транзисторов напряжение смещения, не позволяющее протекать току при работе без подводимых извне импульсов, т. е. путем запирании (блокировки) одной из ламп или транзистора.

Что такое одновибратор и как он работает?

Одновибратором называют одностабильный или ждущий мультивибратор. Схема такого одновибратора очень близка к схеме мультивибратора. Существуют две принципиальные разновидности схем (рис. 10.24) — со связью «крест-накрест» и со связью через общий эмиттерный резистор; кроме того, разработан ряд вариантов этих схем. Некоторые различия связаны, в частности, с подачей запускающего импульса и запиранием (блокировкой) одного каскада.

Переключение может быть выполнено подачей отрицательного импульса на базу запертого транзистора либо положительного импульса на базу проводящего транзистора. Второй способ позволяет использовать импульс меньшей амплитуды, поскольку он дополнительно усиливается. Применение параллельной RС-цепи в ветви ОС вместо одной емкости С дает увеличение связи для составляющих с более высокими частотами по сравнению со связью для составляющих с меньшими частотами. Благодаря этому достигается ускорение отклика транзистора на запускающий импульс, а конденсатор С называют ускоряющим.

Одновибратор используется часто н качестве схемы задержки. При этом на него подается входной импульс и под его влиянием выполняется один рабочий цикл. С выхода снимается импульс, задержанный на время, соответствующее одному рабочему циклу. Это время может регулироваться путем изменения постоянной времени, определяющей время запирания одного из каскадов.




Рис. 10.24. Схемы ждущего мультивибратора (одновибратора)

а — со связью «крест-накрест»; б — с эмиттерной связью

Что такое генераторы с двумя устойчивыми состояниями?

Это генераторы с двумя устойчивыми состояниями равновесия, причем с помощью внешнего импульса можно вызвать переброс схемы из одного состояния в другое. При этом в каждом из состояний схема находится до момента появления следующего импульса. Схема подобного генератора может соответствовать схеме мультивибратора в том смысле, что она представляет собой двухкаскадный усилитель с ПОС с той разницей, что на лампы или транзисторы обоих каскадов подано запирающее напряжение смещения. При включении схемы один элемент, например первый, отперт, а второй заблокирован (заперт) или наоборот.

Переброс схемы из одного устойчивого состояния в другое может происходить при подаче отрицательного импульса на базу непроводящего транзистора, положительного импульса на базу проводящего транзистора, отрицательного импульса на общий эмиттер транзисторов. Подача импульса осуществляется обычно через емкости на коллекторы обоих транзисторов, через емкости на общий эмиттерный резистор и через диоды на коллекторы или базы обоих транзисторов.

Пример решения схемы с двумя устойчивыми состояниями в транзисторном варианте показан на рис. 10.25. В нем использована связь как между эмиттерами, так и «крест-накрест». В последней действуют RС-цепи. Иногда используется связь «крест-накрест» через сопротивления R, однако, как уже упоминалось в гл. 10, RС-цепь улучшает свойства выходных колебаний. Благодаря наличию двух устойчивых состояний подобные схемы широко используются в цифровых схемах, работающих в двоичной системе (см. гл. 12). Они часто служат для счета импульсов в качестве счетчиков, например в цифровых вольтметрах. Чем больше скорость переключения этих схем, тем шире диапазон частот.



Рис. 10.25. Генератор с двумя устойчивыми состояниями

Что такое триггеры?

Триггерами обычно называют схемы с двумя устойчивыми состояниями. Однако часто название «триггер» относят к нестабильным и одностабильным схемам. Во втором случае во избежание недоразумения говорят «мультивибратор» или «одновибратор». Если более точное определение отсутствует, то название «триггер» относится к схеме с двумя устойчивыми состояниями.

Что такое спусковые схемы?

Названием «спусковые схемы» определяются схемы, запускаемые внешним импульсом, т.е. в общем случае схемы с одним или двумя устойчивыми состояниями

Что такое триггер Шмитта?

Триггером Шмитта называется схема (рис. 10.26), в которой оба каскада соединены ветвью, в которой происходят суммирование сигналов из двух каскадов и обратная подача этих сигналов на выходы. Такое решение используется в мультивибраторах с общим эмиттерным резистором. Для каждого из каскадов на этом резисторе возникает ООС, одновременно образуется ПОС, так как часть выходного напряжения второго каскада через этот резистор подводится к первому каскаду. Отрицательная обратная связь стабилизирует рабочую точку, а, кроме того, при соответствующем подборе элементов цепи (например, при большом сопротивлении эмиттерного резистора) может не допускать возникновения «перевозбуждения» в схеме. При этом схема работает без захода в область насыщения, благодаря чему получают импульсы с крутыми фронтами и малой временной задержкой, называемой гистерезисом по отношению к запускающим импульсам. Связь с выхода первого каскада на вход второго осуществляет резистор или диод. Это связь по постоянному току. Триггеры Шмитта применяют в качестве схем с одним или двумя устойчивыми состояниями, а также для формирования прямоугольных колебаний.

Достоинство схемы заключается, в частности, в том, что вход схемы не охвачен петлей ОС и поэтому на входе отсутствуют сигналы, генерируемые схемой. Кроме того, выход схемы хорошо развязан от входа.




Рис. 10.26. Схема триггера Шмитта (а) и формы управляющего и выходного напряжения (б)

Как работает триггер Шмитта?

Схема триггера Шмитта показана на рис. 10 26. Работа схемы протекает следующим образом Если напряжение па входе (управляющее напряжение) равно нулю, транзистор Т1 заперт. В это время проводит транзистор T2, так как на него поступает соответствующее смещение с делителя Rк, R1, R2. Делитель, смещающий транзистор Т2 (в основном Rк), подобран таким образом, чтобы транзистор Т2 не работал в режиме насыщения. Протекающий через транзистор Т2 ток создаст падение напряжения на эмиттерном резисторе Rэ, а это в свою очередь вызывает еще более глубокое запирание транзистора Т1. Увеличение входного напряжения выше определенного уровня вызывает отпирание транзистора Т1 и быстрый переход схемы в другое состояние. В этом состоянии напряжение на коллекторе транзистора Т1 убывает и, следовательно, уменьшается напряженке на базе транзистора T2, и он закрывается. Триггер остается в этом состоянии до тех пор, пока входной сигнал выше порогового уровня. Выходное напряжение в этом состоянии достигает своего максимального значения. Если управляющее транзистором Т1 напряжение уменьшается ниже порогового уровня, наступает рост напряжения на коллекторе транзистора Т1, а следовательно, увеличение напряжения на базе транзистора Т2, так что транзистор Т2 начинает проводить ток и происходит переброс схемы в первое состояние.

Из приведенного описания вытекает одно из типичных применений триггера Шмитта — использование его в качестве генератора прямоугольных колебаний. Триггер Шмитта применяется также в качестве амплитудного дискриминатора или порогового детектора.

Существуют многочисленные схемные модификации триггера Шмитта.

Что такое генератор Миллера?

Это схема, генерирующая напряжение линейной формы (пилообразное — прим. перев.), в которой для повышения линейности этого колебания используется ОС. Схема такого интегратора изображена на рис. 10.27.

Транзистор работает по схеме усилителя с ОЭ с высоким усилением и инверсией фазы. В этой схеме емкость С цепи с ОС, включенная между коллектором и базой, может быть пересчитана на входные зажимы как емкость С', умноженная на коэффициент усиления каскада по напряжению. Конденсатор С' заряжается от источника напряжения постоянным током через резистор R; напряжение на конденсаторе нарастает линейно. Если замкнуть ключ К, то конденсатор разряжается, а транзистор проводит ток. На выходе схемы получают колебание пилообразной формы. Прямоугольное колебание, подведенное к базе транзистора непосредственно или через дополнительный ключевой каскад, обеспечивает их работу в качестве ключей. Схема преобразует управляющее прямоугольное колебание в выходное пилообразное колебание подобно тому, как это делает интегрирующая цепь, отсюда часто встречаемое название интегратор Миллера.



Рис. 10.27. Схема генератора (интегратора) Миллера

Что такое генератор пилообразного напряжения с ООС?

Это генератор линейного пилообразного напряжения с ООС, которая предназначена для улучшения линейности колебания. Схема такого генератора представлена на рис. 10.28. Транзистор Т1 нормально находится в отпертом состоянии; напряжение на конденсаторе С в это время близко к нулю. Если бы в схеме не было транзистора Т2, то при отрицательном импульсе на базе транзистора Т1 происходил бы заряд конденсатора. В схеме с транзистором Т2, используемым в качестве эмиттерного повторителя при запертом транзисторе Т2, возрастающее напряжение на заряжаемом конденсаторе С через повторитель подается в точку соединения резисторов R1 и R2. При возрастании напряжения на конденсаторе потенциал в этой точке увеличивается и протекающий через резистор R2 ток остается почти постоянным. Это означает, что конденсатор заряжается постоянным током и, следовательно, напряжение на конденсаторе будет изменяться по линейному закону.



Рис. 10.28. Схема генератора пилообразного напряжения с ООС

Каково применение релаксационных генераторов?

Применений очень много. Типичным является использование генераторов в качестве источников сигналов. Одновибраторы позволяют получать выходные сигналы с длительностью большей, чем длительность запускающего импульса. Мультивибраторы используются, например, как генераторы, «навязывающие» свою частоту повторения другим схемам, в качестве центрального генератора тактовой частоты в цифровых схемах и т. п.

Нестабильные схемы или схемы с одним устойчивым состоянием также применяют для деления частоты — процесса, в котором каждый k-й импульс данной последовательности импульсов, поданной на мультивибратор, вызывает генерацию новой серии импульсов с частотой повторения, в k раз меньшей. Триггеры используются, в частности, в схемах счетчиков (счетных схем), предназначенных для счета электрических импульсов.

На чем основана синхронизация генераторов?

Это процесс, который состоит в том, чтобы сделать частоту колебаний генератора зависящей от частоты подведенного извне сигнала. В этом случае генератор, который в режиме свободных колебаний (несинхронизированном режиме) работает на собственной частоте, начинает работать на вынужденной, синхронизируемой частоте.

Процесс синхронизации проследим на рис. 10.29. Колебание (рис. 10.29, а) соответствует изменению напряжении на базе транзистора в несинхронизированном состоянии. К генератору подводится синхронизирующее колебание (рис. 10.29, б). Оно добавляется к колебанию генератора в момент t' достигающему при этом уровня, при котором происходит переброс в схеме. В связи с этим получают выходное колебание (рис. 10.29, в). Аналогичная ситуация наступает в моменты t''t''' и т. д., когда каждый из подводимых синхронизирующих импульсов переводит схему генератора из состояния запирания в состояние проводимости. В конечном результате получаем колебание с большей частотой, чем частота собственных несинхронизированных колебаний, и в точности равной частоте синхронизирующего колебания. При этом легко заметить, что для правильной синхронизации требуется соответствующая амплитуда импульсов, подводимых извне. Если это условие не выполняется, то сумма напряжений на генераторе может оказаться недостаточной для достижения уровня, при котором наступает переброс схемы. Синхронизирующее колебание может быть синусоидальным, прямоугольным и любим другим.

Приведенное описание процесса синхронизации относится к нестабильным генераторам. Для генераторов с одним или двумя устойчивыми состояниями непрерывные колебания возникают только под влиянием запускающих импульсов. Без этих импульсов непрерывные колебания не возникают.



Рис. 10.29. Синхронизация мультивибратора:

а — несинхронизированное колебание; б — синхронизирующее колебание; в — вынужденное (синхронизированное) колебание

Что такое схема делителя частоты на триггерах?

Для уменьшения частоты повторения импульсов можно использовать триггеры. Триггер, возбуждаемый последовательностью импульсов, дает на выходе прямоугольное колебание, частота которого в 2 раза меньше частоты повторения импульсов. Это соответствует делению частоты на 2. Если выходное колебание такого триггера подать на следующий, то суммарно два триггера обеспечивают деление в отношении 2·2·2:1 и т. д.

Какое применение находят операционные усилители в генерировании несинусоидальных колебаний?

Операционные усилители (см. гл. 7) могут применяться как для генерирования несинусоидальных колебаний, так и для их формирования. Для этого используются операционные усилители в виде интегральных микросхем. Имеются, однако, интегральные микросхемы, содержащие триггеры и другие схемы, используемые в цифровой технике и допускающие более простую реализацию сложных схем.

Глава 11 МОДУЛЯЦИЯ И ДЕТЕКТИРОВАНИЕ

Что такое модуляция?

Модуляция — это процесс изменения во времени выбранной характеристической величины одного переменного электрического колебания, называемого модулируемым, под влиянием второго колебания, называемого модулирующим.

Когда применяется модуляция?

Непосредственная передача информации, например по проводам, не всегда возможна и рациональна. Передача информации с помощью электромагнитных волн возможна только в диапазоне высоких частот, в котором энергия может излучаться с большей эффективностью. Для устранения взаимных помех при передаче на расстояние по радио или по проводам большого объема информации, в частности телефонной, существует необходимость переноса ее из занимаемого низкочастотного диапазона частот (звуковых) в диапазон высоких частот.

Модуляция предназначена для переноса информации, содержащейся в некотором диапазоне частот, в другой частотный диапазон и в связи с этим является основным процессом в области передачи сигналов, особенно с помощью электромагнитных волн.

Колебание, с помощью которого передается сигнал, носит название несущего колебания или несущей частоты. В процессе модуляции на несущую накладывается модулирующее колебание, содержащее передаваемую информацию.

Какие существуют виды модуляции?

Существует несколько основных видов модуляции. Перед тем как их определить, следует обратить внимание на то, что несущее колебание, подвергаемое процессу модуляции, является синусоидальным колебанием, которое можно записать в следующем виде:

u = A·cos(ωt + θ)

где А — амплитуда несущего колебания; ω = 2πft — круговая частота несущего колебания; θ — фазовый угол.

Модулирующий сигнал, содержащий информацию, может изменять каждую из этих величии таким способом, который отражает его мгновенное значение. В том случае, когда амплитуда несущего колебания изменяется пропорционально модулирующему сигналу, имеем дело с амплитудной модуляцией. Если пропорционально сигналу изменяется частота f несущего колебания, то говорят о частотной модуляции. И, наконец, если пропорционально сигналу изменяется фазовый угол θ несущего колебания, имеет место фазовая модуляция. Два последних вида модуляции (частотную и фазовую) определяют иногда общим названием — угловая модуляция.

Все указанные виды модуляции относятся к непрерывной модуляции. Кроме того, существует возможность дискретизации модулирующего сигнала путем создания импульсов, которые содержат информаций, соответствующую модулирующему сигналу. Этим импульсом можно модулировать величины А или «несущего колебания. При этом будем иметь дело со многими системами импульсной модуляции.

Следует еще упомянуть, что для каждого вида модуляции всегда очень важным вопросом с практической точки зрения является сохранение лишь одного вида модуляции. Если несущее колебание одновременно модулируется по амплитуде и фазе, то один из этих видов модуляции рассматривается как паразитный.

Каковы основные свойства амплитудной модуляции?

При амплитудной модуляции амплитуда несущего колебания А изменяется пропорционально модулирующему сигналу. На рис. 11.1 показаны три колебания — несущее, модулирующее и модулированное. Видно, что в модулированном колебании огибающая выходного сигнала идентична модулирующему сигналу. Характерно то, что, когда огибающая увеличивается в положительном направлении,одновременно она увеличивается и в отрицательном. Амплитуда огибающей является долей амплитуды несущего колебания. Эта доля, обозначаемая буквой m, обычно выражена в процентах и называется коэффициентом глубины модуляции или просто глубиной модуляции. Глубина модуляции может изменяться от 0 до 100 %. Если m больше 100 %, то модулированное колебание сильно искажено.



Рис. 11.1. Амплитудная модуляция:

а — не модулированное несущее колебание; б — модулирующий сигнал; в — амплитудно-модулированное колебание


Если несущее колебание промодулировано косинусоидальным сигналом, мгновенное значение модулированного колебания можно записать в следующем виде:

u = (1 + m·cos ΩtA·cos ωt

в котором m — глубина модуляции; А — амплитуда несущего колебания; Ω — круговая частота модулирующего сигнала; ω — круговая частота несущего колебания.

Преобразуем это уравнение


Три полученные составляющие определяют спектр модулированного сигнала.

Первая составляющая является несущим колебанием с частотой ω, вторая составляющая с амплитудой m·А/2 и частотой ω + Ω — верхняя боковая полоса, а третья составляющая с амплитудой m·А/2 и частотой ωΩ — нижняя боковая полоса. Если, например, частота несущего колебания составляет 200, а частота модулирующего сигнала 1 кГц, то спектр модулированного сигнала состоит из трех частот: 200 кГц, 200 — 1 = 199 кГц и 200 + 1 = 201 кГц.

Из рис. 11.2 видно, что модулирующий сигнал с частотой 1 кГц перенесен в полосу несущей 200 кГц и информация в модулированном сигнале содержится в двух боковых полосах, расположенных симметрично относительно несущего колебания. Одновременно можно сделать вывод, что ширина полосы, занимаемой амплитудно-модулированным сигналом, равна удвоенной частоте модулирующего сигнала.



Рис. 11.2. Частотный спектр амплитудно-модулированного сигнала:

1 — несущая частота; 2 — нижняя боковая; 3 — верхняя боковая частота


Следует подчеркнуть, что существование боковых полос не является результатом математического анализа, вытекающего из преобразования выражения для модулированного сигнала, а имеет реальную физическую интерпретацию. С помощью соответствующих фильтров можно выделить отдельные составляющие спектра, так же как, располагая такими составляющими, можно составить колебание, соответствующее модулированному колебанию.

На практике модулирующий сигнал не является простейшим синусоидальным сигналом, а занимает некоторую полосу частот, например звуковых или изображения. В связи с этим боковые полосы выглядят не одиночными линиями, а полосами, расположенными симметрично относительно несущего колебания.

Из анализа спектра амплитудно-модулированного сигнала вытекает, что полезная информация содержится только в боковых полосах (частотах). Сравнивая амплитуды отдельных спектральных линий, приходим к выводу, что они находятся в соотношении 1:(m/2):(m/2). Поскольку мощность пропорциональна квадрату напряжения, отношение мощностей, переносимых боковыми частотами, имеет вид: 1:(m2/4):(m2/4). Например, если мощность несущего колебания составляет 500 Вт, то при m = 1 мощность каждой из боковых составляет 125 Вт и, следовательно, соответствует только 25 % мощности несущего колебания. При меньших глубинах модуляции доля боковых частот в общей мощности еще меньше. Изменению не подвергается только мощность несущего колебания — переносчик энергии.

Далее увидим, что существует возможность передачи информации без несущего колебания, а также без несущей и одной боковой полосы в системах однополосной модуляции.

На каком принципе работают амплитудные модуляторы?

Основное требование, предъявляемое к амплитудному модулятору, — это то, чтобы он был нелинейным устройством. При подведении к нелинейному устройству двух сигналов с разными частотами создаются условия взаимодействия этих сигналов. Рассмотрим простейший диодный модулятор, изображенный на рис. 11.3.



Рис. 11.3. Диодный модулятор


Во входную цепь диода включены два источника сигналов, из которых один является несущим сигналом с частотой f, значительно большей, чем частота F другого сигнала, являющегося модулирующим. Напряжение, возникающее на нагрузочном сопротивлении диода, управляет буферным усилителем, нагруженным резонансным контуром, настроенным на частоту несущего сигнала. Из-за нелинейности характеристики диода в его выходной цепи возникают сигналы основной частоты и комбинированных частот типа f + F; f + 2F; fF; f — 2F; 2f + F и т. д. Подбирая соответственно ширину полосы резонансного контура, можно выделить на выходе сигналы с частотами f; fF и f + F, соответствующие несущему колебанию, а также нижней и верхней боковым частотам. Как уже известно, сумма этих сигналов является амплитудно-модулированным колебанием.

Какие существуют схемы амплитудных модуляторов?

Диодный модулятор, изображенный на рис. 11.3, на практике почти не применяется, поскольку не позволяет получать большие глубины модуляции без значительных искажений. Чаще всего амплитудная модуляция осуществляется в одном из каскадов высокочастотных усилителей мощности, работающих в классе С, так как только при этом можно получить достаточную линейность модулированного колебания. Модуляцию можно осуществлять как на низком, так и на высоком уровне мощности. В первом случае амплитудно-модулированное колебание усиливается в линейном усилителе класса В до требуемого выходного уровня.

Принцип работы модуляторов класса С основывается на увеличении коэффициента усиления усилителя высокой частоты в положительный полупериод модулирующего сигнала и уменьшении его в отрицательный полупериод. Этот принцип осуществляется подачей модулирующего сигнала на сетку, анод или катод триода. В пентоде модулирующий сигнал может быть подан на экранную или защитную сетку. Обычно уже в названии схемы модулятора указывается, на какой из электродов усилительной лампы подается модулирующий сигнал. В передатчиках малой мощности в модуляторах работают транзисторы, при этом модулирующий сигнал подводится к коллектору, эмиттеру либо базе.

На рис. 11.4 изображены основные схемы модуляторов. При анодной модуляции напряжение, питающее анод лампы усилителя высокой частоты, изменяется в такт с модулирующей частотой благодаря включению в цепь питания трансформатора. В сеточном модуляторе модуляционный трансформатор включен последовательно с источником отрицательного сеточного напряжения. Достоинством сеточного модулятора является то, что он требует относительно малой мощности модулирующего сигнала. Обычно этот вид модулятора применяется в телевизионных передатчиках большой мощности, поскольку анодный модулятор был бы более сложным устройством из-за широкой полосы частот, требуемой для передачи телевизионного сигнала. Катодный модулятор действует аналогично сеточному модулятору (рис. 11.4, в).





Рис. 11.4. Основные схемы модуляторов:

а — анодный; б — сеточный; в — катодный

Что такое однополосная модуляция и как ее получают?

Из анализа спектра амплитудно-модулированного сигнала следует, что несущее колебание не принимает активного участия в переносе информации, несмотря на то, что оно поглощает большую часть энергии передатчика. Кроме того, известно, что одна боковая полоса содержит все необходимые данные о модулирующем сигнале, а вторая лишь удваивает информацию, содержащуюся в первой боковой полосе. На основании этого были разработаны два новых вида амплитудной модуляции.

Если несущее колебание подавляется, а передаются только боковые полосы, то такой вид модуляции называется двух полосной, модуляцией с подавляемой несущей. Несущее колебание можно исключить путем использования балансного модулятора, примером которого служит кольцевой модулятор, состоящий из четырех диодов (рис. 11.5).




Рис. 11.5. Электрическая схема (а) и форма выходного сигнала (б) кольцевого модулятора


Четыре диода в этой схеме идентичны, а точки р и р' являются средними точками обмоток. Между точками р и р' включается источник модулирующего колебания, а к трансформатору Tp1 подводится модулируемый' сигнал. Поскольку схема симметрична, на выходе отсутствуют модулирующий сигнал и сигнал несущего колебания. При наличии модулирующего сигнала высокочастотное напряжение на выходе схемы пропорционально мгновенному значению модулирующего сигнала. Анализируя такой сигнал, можно прийти к выводу, что он содержит только модуляционные боковые частоты f + F и f + F без несущей.

В приемнике амплитудно-модулированных сигналов с подавленной несущей эту несущую следует восстановить для того, чтобы можно было осуществить процесс обратный модуляции, т. е. детектирование. Для того чтобы упростить восстановление несущей в приемнике, ее устраняют из передаваемого сигнала не полностью, а частично. Поэтому такая система носит название «с подавляемой несущей».

Другая схема модуляции — это схема однополосной модуляции, в которой кроме частичного подавления несущей используется полное исключение нижней боковой полосы (рис. 11.6). Однополосная модуляция помимо большой энергетической эффективности, являющейся следствием подавления несущей, дает еще экономию полосы пропускания, используемой для передачи сигнала, поскольку снижает в 2 раза необходимую ширину полосы. Исключение боковой полосы осуществляется с помощью соответствующих фильтрующих схем либо более сложных схем с фазовращателями. Схему однополосной модуляции применяют в проводной связи и радиосвязи.




Рис. 11.6. Спектры амплитудно-модулированных сигналов при двухполосной (а) и однополосной (б) модуляции

Что такое детектирование?

Детектирование или демодуляция — это процесс, обратный модуляции, в результате которого из модулированного колебания получают модулирующий сигнал. Очевидно, что для каждого вида модуляции существует соответствующий ему вид демодуляции, например амплитудная демодуляция, частотная и т. п.

Процесс демодуляции используется в радиоприемниках и телевизорах, предназначенных для приема модулированных сигналов. В результате получают полезный сигнал, идентичный модулирующему сигналу в передатчике.

Каков принцип работы амплитудного детектора?

Задачей амплитудного детектора является перенос спектра модулирующего сигнала, расположенного около несущей частоты (в виде боковых полос), в полосу частот, первоначально занимаемую этим сигналом. Так же как и при модуляции, процесс детектирования требует использования устройства с нелинейной характеристикой. Разница по сравнению с модулятором заключается в том, что в детекторе сигнал с несущей частотой не подводится от отдельного источника, а содержится в самом сигнале. Если в сигнале несущая подавлена, как это происходит при однополосном сигнале, то она должна быть восстановлена в приемнике и добавлена к сигналу, подвергаемому детектированию.

Требуемую нелинейность характеристики детектора получают путем соответствующего выбора рабочей точки транзистора, лампы или диода. Принцип работы нелинейного (квадратичного) детектора на транзисторе можно пояснить с помощью схемы, представленной на рис. 11.7.



Рис. 11.7. Схема детектора на транзисторе


Детектирование происходит после подачи модулированного колебания на базу транзистора. Из-за нелинейности входной характеристики в выходном колебании появляется составляющая, которая изменяется в такт с модулирующей частотой. Имеющийся сигнал высокой частоты устраняется с помощью RС-цепочки, образующей фильтр нижних частот. Из более подробного анализа выходного колебания следует, что помимо основной составляющей в нем действует составляющая с частотой второй гармоники модулирующего сигнала, пропорциональная глубине модуляции. Поэтому в результате детектирования возникают искажения полезного сигнала, которые оправдывают название этого типа детектирования (нелинейное детектирование), но одновременно ограничивают применение рассматриваемой схемы.

Как действует линейный диодный детектор?

Схема диодного детектора представлена рис. 11.8.



Рис. 11.8. Диодный детектор


Диод в этой схеме работает как выпрямитель напряжения высокой частоты. Входной амплитудно-модулированный сигнал подводится от резонансного контура, настроенного на несущую частоту и имеющего достаточную ширину полосы для выделения амплитудно-модулированного колебания. Диод как элемент с однонаправленным действием выпрямляет модулированное колебание, поэтому в нагрузку проходит только положительная полуволна сигнала. Если бы диод был включен в обратном направлении (катодом к резонансному контуру), то выпрямлялась бы отрицательная полуволна сигнала.

Если сопротивление диода rд мало по сравнению с сопротивлением резистора R на выходе возникает напряжение, равное амплитуде входного сигнала. Постоянная времени RC подбирается таким образом, что высокочастотная составляющая отфильтровывается и на выходных зажимах действуют только постоянная составляющая и модулирующий сигнал. Постоянную составляющую можно устранить с помощью конденсатора, включенного последовательно с дальнейшей частью тракта, предназначенного для усиления сигнала, полученного в результате детектирования. На рис. 11.9 представлены последовательные этапы получения напряжения, соответствующего огибающей модулированного сигнала.



Рис. 11.9. Формы колебаний при диодном детектировании:

а — амплитудно-модулированное на входе; б — после одпополупериодного выпрямителя; в — на нагрузке; г — выходное колебание без постоянной составляющей


Пояснения требует определение диодного детектора как линейного. Название происходит от динамической характеристики диода, представленной на рис. 11.10[25].



Рис 11.10. Динамическая характеристика линейного детектора


Эта характеристика является отрезком прямой линии, поэтому выпрямленное детектором напряжение линейно зависит от напряжения, подвергаемого процессу детектирования. Линейная зависимость обоих напряжений имеет место только при больших амплитудах, примерно более полувольта.

При малых амплитудах детектор ведет себя, как описанный выше нелинейный детектор. Следует добавить, что линейный диодный детектор во всем остальном остается нелинейным устройством, поскольку начальная рабочая точка схемы находится в месте излома динамической характеристики диода. Именно эта нелинейность в начале системы координат (при отрицательных управляющих напряжениях ток через диод не протекает) и является фактором, способствующим детектированию.

Какие критерии выбора постоянной составляющей RС-цепи в диодном детекторе?

Резистор R и конденсатор С в детекторе образуют двухполюсник, характеризующийся определенной постоянной времени RC, зависящей от нескольких факторов. Прежде всего, с точки зрения обеспечения высокого КПД детектирования, определяемого отношением выпрямленного напряжения к амплитуде сигнала высокой частоты, сопротивление резистора R должно быть как можно больше.

По этой же причине как можно больше должна быть емкость конденсатора С (падение напряжения высокой частоты на емкостном сопротивлении будет малым). Однако, с другой стороны, излишне большая емкость конденсатора С приводит к тому, что изменения выпрямленного напряжения не успевают за изменениями модулирующего сигнала, что является источником искажений. В связи с этим принимаются компромиссные значения этих элементов в соответствии с соотношением


где ω — несущая частота; Ω — наивысшая модулирующая частота.

В детекторе радиовещательного сигнала сопротивление резистора R обычно лежит в пределах 0,5–1 МОм, а емкость конденсатора С составляет около 100 пФ, тогда как в широкополосном телевизионном детекторе сопротивление R около 2–4 кОм при шунтирующей емкости около 10 пФ. Очевидно, что во втором случае КПД детектирования меньше.

Может ли полевой транзистор работать как амплитудный детектор?

Да. Полевой транзистор в схеме па рис. 11.11, а работает в качестве амплитудного детектора, если сопротивление резистора Ru около 100 кОм и даже 1 МОм. Столь высокое сопротивление приводит к тому, что рабочая точка лежит достаточно близко к точке отсечки тока стока. Если на затвор транзистора подать амплитудно-модулированный сигнал, то ток стока будет протекать в виде импульсов, амплитуда которых определяется огибающей модуляции (рис. 11.11, б). Средний ток стока будет изменяться в соответствии с изменением модулирующего сигнала.

При больших амплитудах модулированного ВЧ сигнала условия работы детектора приближаются к условиям работы линейного диодного детектора. Дополнительным преимуществом является усиление демодулированного сигнала.

Детектор на полевом транзисторе является эквивалентом лампового детектора, работающего в схеме сеточного детектирования, принцип которого идентичен принципу описанного выше детектора.




Рис. 11.11. Схема (а) и формы колебаний (б) в амплитудном детекторе на полевом транзисторе

Как работает сеточный детектор

Схема сеточного детектора представлена на рис. 11.12. В детекторе этого типа выпрямление происходит в цепи сетки, причем сетка и катод действуют в качестве диодного детектора, сопротивлением нагрузки которого является цепочка RсCс. Постоянная времени подобрана таким образом, что напряжение смещения лампы, возникающее в результате протекания тока сетки, изменяется в соответствии с изменением огибающей модуляции.

Полученное в результате детектирования напряжение с частотой модулирующего сигнала усиливается в анодной цепи лампы, поэтому сеточное детектирование характеризуется высокой чувствительностью.



Рис. 11.12. Схема сеточного детектора RсCс

Каковы основные черты частотной модуляции?

При частотной модуляции модулирующий сигнал не изменяет амплитуды несущего колебания, а вызывает лишь изменение его мгновенной частоты (рис. 11.13). Мгновенное значение несущей частоты зависит от амплитуды модулирующего сигнала, тогда как скорость, с которой происходят изменения несущей частоты, определяется частотой модулирующего сигнала. Предположим, что несущая частота составляет 50 МГц, а амплитуда синусоидального модулирующего сигнала равна 1 В. Допустим далее, что под влиянием положительного модулирующего напряжения частота возрастает максимально до 50,1 МГц, а под влиянием максимального отрицательного — убывает до 49,9 МГц.

В каждом периоде модулирующего сигнала мгновенное значение частоты изменяется в пределах 49,9—50,1 МГц такое количество раз в секунду, какова частота модулирующего колебания. Если бы амплитуда модулирующего напряжения составляла 2 В, частота несущего колебания изменялась бы в пределах 49,8—50,2 МГц.



Рис. 11.13. Формы колебаний при частотной модуляции:

а — модулирующее; б — частотно-модулированное


Приведенный пример является иллюстрацией общего принципа частотной модуляции, из которого следует, что амплитуда модулирующего напряжения определяет отклонение несущей частоты в одном направлении, или девиацию частоты, Δω. Из этого принципа также следует, что девиация частоты Δω содержит информацию об амплитуде или уровне модулирующего сигнала. Характерным для частотной модуляции понятием является индекс модуляции, определяемый как отношение девиации Δω к модулирующей частоте Ω:

МЧ = Δω/Ω

Индекс модуляции принимает разные значения. Принятый стандарт частотной модуляции характеризуется индексом модуляции, определяемым отношением максимально допустимой девиации Δωmах к максимальной модулирующей частоте,

МЧmax = Δωmax/Ωmax

Например, в принятом в ПНР телевизионном стандарте максимальная девиация несущей частоты звукового сопровождения составляет 50, а максимальная по модулирующей частоте 15 кГц. Отсюда МЧmax = 50/15 = 3,33.

Каков спектр у частотно-модулированного сигнала?

Спектр частотно-модулированного сигнала принципиально отличен от спектра амплитудно-модулированного сигнала. Он также имеет линейный характер, однако число линий значительно больше.

При амплитудной модуляции наблюдались только две боковые частоты, отстоящие от несущей и а значение модулирующей частоты.

Из математического анализа частотно-модулированного сигнала следует, что при частотной модуляции возникают пары боковых частот. Существуют верхняя и нижняя боковая частоты, соответствующие частоте модулирующего сигнала, и пары боковых частот, соответствующие второй, третьей и последующим гармоникам сигнала. Имеется также составляющая несущей частоты. Распределение амплитуд отдельных спектральных линий зависит от индекса модуляции МЧ, а их число теоретически бесконечно велико. На практике спектральные линии высших порядков (соответствующие высшим гармоникам модулирующего сигнала) не принимаются во внимание, поскольку их амплитуды очень малы. Для примера на рис. 11.14 представлен спектр сигнала, промодулированного по частоте низкочастотным сигналом 7,5 с девиацией 75 кГц (МЧ = 10).

Для практических целей ширину спектра при частотной модуляции рассчитывают по формуле

2Δω = В = 2Δωmax + 2Ωmax + 2√(Ωmax·Δωmax)

В стандарте, в котором Δωmax = 2π·50 кГц, а Ωmax =2π·15 кГц кГц, ширина спектра В = 185 кГц.

Ширина спектра частотно-модулированного сигнала достаточно велика. Именно по этой причине частотная модуляция применяется в диапазоне метровых волн, соответствующем частотам от 50 МГц,

Каковы преимущества частотной модуляции?

Главным преимуществом частотной модуляции является значительное уменьшение чувствительности сигнала к помехам. Исходя из того, что большинство помех амплитудного характера добавляется к сигналу, который, по определению, имеет постоянную амплитуду, появляются условия для их эффективного устранения, например, методом ограничения амплитуды.

Кроме того, поскольку амплитуда частотно-модулированного сигнала постоянна, а девиация частоты пропорциональна амплитуде модулирующего сигнала, можно передавать полную динамику сигнала, т. е. как наименьшие, так и наибольшие значения. При амплитудной модуляции этого не могло быть, поскольку глубина модуляции не могла быть ни слишком малой, ни слишком большой, если учитывать шумы и помехи в первом случае, а во втором — возможность перемодуляции передатчика.

Весьма существен и тот факт, что в результате постоянной амплитуды частотно-модулированного сигнала выходная мощность передатчика остается все время одной и той же. Это создает возможности экономичного решения и экономичной работы передатчика.

Напомним, что передатчик амплитудно-модулированного сигнала с номинальной мощностью около 10 кВт должен быть приспособлен отдавать при 100 %-ной модуляции среднюю мощность 15 и пиковую 40 кВт.

Система с частотной модуляцией является высококачественной и предназначена главным образом для верной передачи звуковых сигналов. Отсюда ее широкое распространение в моно- и стереофоническом радиовещании на ультракоротких волнах.

В чем состоит принципиальное различие между фазовой и частотной модуляцией?

При фазовой модуляции не частота, а фаза несущего колебания линейно зависит от мгновенного значения модулирующего колебания. Девиация фазы при этом не зависит от частоты модуляции. Однако из-за того что между изменением фазы и частоты существует непосредственная зависимость, девиации фазы при фазовой модуляции сопутствует девиация частоты, которая пропорциональна модулирующей частоте. Напомним, что при частотной модуляции девиация частоты не зависит от модулирующей частоты. Несмотря на эти отличия, ясно, что фазовая и частотная модуляции действуют одновременно, так как связаны между собой. Можно также показать, что индекс модуляции идентичен с индексом девиацией фазы.

В связи с этим спектральное распределение в частотной и фазовой модуляции одно и то же, хотя расположение спектральных линий отличается. Исходя из взаимного подобия можно легко переходить с одного вида модуляции на другой. Обычно фазовую модуляцию используют только на переходном этапе до получения «чистой» частотной модуляции.

Как получают частотную модуляцию?

Существует несколько методов получения частотно-модулированных сигналов. Непосредственный метод заключается в изменении емкости или индуктивности резонансного контура генератора в такт с изменениями модулирующего сигнала. Примером, иллюстрирующим этот метод, служит емкостный микрофон, включенный в резонансный контур генератора. Наиболее удобная форма реализации этого метода заключается в подключении параллельно резонансному контуру реактивной схемы, реактивное сопротивление которой изменяется при изменении модулирующего сигнала. Реактивной схемой может быть лампа или транзистор, работающие по специальной схеме включения, или емкостный диод.

Примером реактивного транзистора является схема, изображенная на рис. 11.15.



Рис. 11.15. Схема реактивного транзистора


Для упрощения в ней опущены все блокировочные конденсаторы и цепи смещения. Характерным для этой схемы является делитель, состоящий из конденсатора С и резистора R, подобранный таким образом, чтобы выполнялось условие Хс >> R. Схема усилителя, работающего совместно с этим делителем, отличается тем, что переменное напряжение вводится извне (от генератора) в цепь коллектора и оценивается влияние этой схемы на фазе тока, протекающего под воздействием приложенного напряжения. Оказывается, что в результате фазового сдвига, вносимого конденсатором С, ток коллектора на 90 опережает напряжение на коллекторе. Подобная зависимость между напряжением и током характерна для емкости, т. е. схема ведет себя как конденсатор. Эквивалентная емкость выражается формулой Сэкв = RC/h11б и, следовательно, обратно пропорциональна h11б. Если h11б изменяется под влиянием приложенного к базе транзистора модулирующего напряжения, то изменяется и эквивалентная емкость реактивного транзистора, подключенного параллельно к резонансному контуру генератора, т. е. происходит модуляция частоты. Аналогично действует схема с емкостным диодом (рис. 11.16).



Рис. 11.16. Частотный модулятор с емкостным диодом


Емкость диода меняется при изменениях обратного напряжения смещения диода. Начальное обратное напряжение подводится к диоду от делителя R1R3, шунтированного конденсатором C1. Резистор R2 развязывает схему питания от резонансного контура генератора. Мгновенное значение напряжения на емкостном диоде является суммой напряжения смещения и напряжения низкой частоты, подведенного с помощью трансформатора. В результате к LC-контуру генератора параллельно подключается переменная емкость. Из-за того что приращение емкости ΔС емкостного диода изменяется вместе с изменением модулирующего сигнала, частота колебаний генератора подвергается изменению, пропорциональному амплитуде сигнала.

Помимо представленных методов непосредственной модуляции применяется метод косвенной частотной модуляции, позволяющий поддерживать соответствующее постоянство несущей частоты при отсутствии модуляции. Для осуществления такого метода используются модулятор Армстронга (косвенный частотный модулятор — прим. перев.), снабженный кварцевым генератором, и схемой фазовой модуляции, вырабатываемой путем суммирования сдвинутых на 90° боковых полос амплитудной модуляции с несущей. В результате использования схемы, позволяющей перейти от фазовой модуляции к частотной, и ограничения амплитуды выходного сигнала получают сигнал с чистой частотной модуляцией.

На каком принципе работают частотные демодуляторы?

Большинство используемых частотных демодуляторов, служащих для получения модулирующего сигнала из частотно-модулированного, работает на принципе преобразования изменений частоты в изменения амплитуды и последующего детектирования сигнала с амплитудной модуляцией с применением обычных методов. Известны также частотные демодуляторы, работающие на принципе счета импульсов, а также более сложные демодуляторы, выполняемые в виде интегральных микросхем.

Характерным для техники частотной демодуляции является то, что собственно демодулятору, как правило, предшествует ограничитель амплитуды. Задачей ограничителя является исключение изменений сигнала, вызванных мешающими сигналами, для эффективного подавления на выходе демодулятора.

Как действует ограничитель амплитуды?

Простым ограничителем служит усилитель, управляемый сигналом, превышающим уровень максимального (без искажений) возбуждения транзистора между отсечкой и насыщением. Транзистор, работающий в схеме ограничителя, представлен на рис. 11.17, б и в.





Рис. 11.17. Транзисторный ограничитель:

а — электрическая схема; б — рабочий диапазон на плоскости коллекторных характеристик; в — характеристика ограничения


В рабочей точке А ограничителя применяется относительно низкое напряжение, питающее коллектор. Если входной сигнал превышает пределы В и С, дальнейшее увеличение уровня выходного сигнала за этими пределами невозможно. Наименьший входной сигнал, который вызывает ограничительное действие ограничителя, называется порогом ограничении. Сигналы больше порогового, т. е. выше точки D, срезаются (ограничиваются) сверху и снизу. Резонансный контур, включенный в цепь коллектора, возвращает им синусоидальную форму.

Какая схема у простого частотного детектора?

Наиболее простым частотным детектором является детектор, работающий на скате амплитудной характеристики резонансного контура. Принцип работы такого детектора изображен на рис. 11.18.



Рис. 11.18. Принцип работы частотного детектора, работающего на скате резонансной кривой


Резонансный контур отстроен от несущей частоты подведенного частотно-модулированного сигнала. Если частота этого сигнала меняется по синусоидальному закону в соответствии с изменением модулирующего сигнала, то ток в контуре также меняется синусоидально, возрастая при приближении частоты сигнала к резонансной частоте контура и убывая при удалении частоты сигнала от значения, соответствующего резонансу. При таком решении выходной сигнал является амплитудно-модулированным. На выходе схемы амплитудного детектирования получаем модулирующий сигнал.

Из-за нелинейности ската амплитудной характеристики резонансного контура и связанных с ней искажений демодулированного сигнала, а также большой чувствительности схемы к амплитуде входного сигнала эта простая схема детектора не используется.

Как действует частотный дискриминатор?

Частотный дискриминатор является одной из наиболее часто используемых схем частотной демодуляции. Схема такого дискриминатора представлена на рис. 11.19.



Рис. 11.19. Частотный дискриминатор


Сигнал постоянного уровня подается с ограничителя на связанные резонансные контуры, настроенные на одну и ту же резонансную частоту, равную несущей частоте модулированного колебания. Работа дискриминатора основывается на сдвиге фазы напряжений на первом и втором контурах полосового двузвенного фильтра. Разность фаз этих напряжений составляет 90° на резонансной частоте контуров, а за резонансом изменяется вместе с изменением частоты. Благодаря двойной связи между контурами, индуктивной и непосредственной через конденсатор С3 с большой емкостью, первичное и вторичное напряжения суммируются особым способом и подаются на встречно работающие амплитудные детекторы. Высокочастотный дроссель замыкает цепь для постоянного тока.

Переменное напряжение, подведенное к верхнему диоду Д1, является векторной суммой первичного напряжения АВ и половины вторичного напряжения DE, изображенной вектором М (рис. 11.20).



Рис. 11.20. Принцип действия фазового дискриминатора:

а — векторная диаграмма при f = f0; б — векторная диаграмма при f > f0; в — векторная диаграмма при f < f0; г — характеристика дискриминатора


Соответственно переменное напряжение, подведенное к нижнему диоду Д2, является векторной суммой первичного напряжения АВ и второй половины вторичного напряжения DC, образующей вектор N. Нагрузочные сопротивления детекторов R1 и R2 одинаковы. На резонансной частоте (рис. 11.19, 11.20) переменные напряжения М и N равны друг другу, а следовательно, равны и выходные постоянные напряжения на резисторах R1 и R2. С учетом встречного включения диодов эти напряжения имеют, однако, противоположный знак, в связи с чем результирующее напряжение на всей нагрузке равно нулю. Это значение представляется точкой О на рис. 11.20, г.

Если частота входного сигнала больше резонансной, напряжения АВ и СЕ благодаря действию ограничителя остаются неизменными, однако изменяется разность фаз между ними. Напряжение М (рис. 11.20, б), подведенное к верхнему диоду, больше, чем напряжение N, подведенное к нижнему диоду. В итоге результирующее напряжение на резисторах R1 и R2 положительно, что соответствует точке у на рис. 11.20, г.

Если частота входного сигнала меньше резонансной, то фазовые соотношения между напряжениями таковы, как на рис. 11.20, в, и результирующее напряжение на резисторах R1 и R2 отрицательно (точка х на рис. 11.20, г). Характеристика дискриминатора представлена во всем интервале изменения частоты около резонансного значения. В большом интервале изменений частоты характеристика линейна, т. е. существует пропорциональность между частотой и выходным напряжением. Прямолинейный участок является рабочим участком характеристики дискриминатора. Вне его характеристика нелинейна. Если изменения частоты выходят за пределы, определяемые точками тип, работа происходит уже за пределами полосы пропускания связанных контуров и выходное напряжение убывает до нуля. Вся характеристика по форме близка к латинской букве S.

Что такое детектор отношений?

Схема детектора отношений представлена на рис. 11.21. Она похожа на схему фазового дискриминатора. Разница заключается в последовательном соединении диодов, использовании электролитического конденсатора, включенного параллельно нагрузочным резисторам, и сложении первичного напряжения со вторичным посредством третьей катушки L3.



Рис. 11.21. Детектор отношений


Если изменение входного сигнала меньше, чем напряжение, действующее на электролитическом конденсаторе, диоды не могут проводить и на нагрузке не возникает напряжения сигнала. В любом случае напряжение на нагрузке не может быть больше, чем напряжение на конденсаторе, следовательно, схема детектора отношений действует так же, как ограничитель напряжения.

В условиях работы с ограничением сумма напряжений на конденсаторах C1 и С2 равна напряжению на электролитическом конденсаторе. Напряжение UС1 равно амплитуде напряжения, подведенного к диоду Д1, а напряжение UC2 — соответственно амплитуде напряжения, подведенного к диоду Д2. На резонансной частоте напряжения UС1 и UC2 равны и выходное напряжение, снимаемое между точками А и В, равно нулю.

Если частота сигнала больше резонансной, то переменное напряжение на диоде Д1 больше, чем на диоде Д2, и выходное напряжение положительно. При частоте меньше резонансной это напряжение отрицательно. Сумма напряжений UC1 и UC2 постоянна, поэтому изменения напряжений UС1 и UС2 делятся пропорционально, отсюда и название схемы — детектор отношений.

Статическая характеристика детектора отношений, как и у фазового дискриминатора, является S-образной кривой.

Что такое преобразование частоты?

Преобразование частоты, называемое также транспонированием спектра, является процессом, переносящим сигнал данной частоты (линейного или занимающего некоторый спектр) в диапазон других, обычно более низких частот.

Прежде всего преобразование частоты используется для упрощения процесса усиления сигнала. Известно, что технические трудности в создании многокаскадного усилителя с высокой избирательностью возрастают с ростом частоты. Они являются еще большими, если усилитель должен быть перестраиваемым. Поэтому целесообразны перенос интересующего нас сигнала, например от радио- или телевизионной станции, в диапазон более низких частот и построение усилителя, работающего именно в этом диапазоне частот.

На чем основывается преобразование частоты?

Преобразование частоты основано на взаимодействии в цепи нелинейного элемента (рис. 11.22) двух сигналов: сигнала, подвергаемого преобразованию, fс и сигнала fгет, подводимого от местного генератора (гетеродина). В результате возникают сигналы с частотами 2fс, 2fгетfгет + fсfгетfс. Появилась также составляющая с частотой, являющейся разностью частот обоих смешиваемых сигналов. Эту составляющую можно легко выделить с помощью контура, настроенного на частоту fгетfс.



Рис. 11.22.Преобразование частоты в цепи с диодом


Если fс — модулированный сигнал, занимающий определенный частотный спектр, то в результате преобразования весь спектр сигнала будет перенесен в диапазон более низких частот. Эго наглядно представлено на рис. 11.23.

Разностная частота fгетfс (чacтoта биений обоих сигналов) чаще называется промежуточной частотой fпч. Таким образом, в результате преобразования двух сигналов с разными частотами получаем сигнал промежуточной частоты.



Рис. 11.23. Спектры колебаний в преобразователе частоты

Как работает супергетеродинный приемник?

Супергетеродинный приемник — это приемник, в котором используется процесс преобразовании частоты. На основе уже известных процессов усиления сигнала, генерирования напряжения высокой частоты, преобразования и детектирования можно понять действие приемника сигналов высокой частоты, такого как, например, радиоприемник и телевизор.

Структурная схема супергетеродинного радиоприемника представлена на рис. 11.24.



Рис. 11.24. Структурная схема супергетеродинного радиоприемника


Принятые антенной сигналы высокой частоты поступают во входные контуры приемника, где происходит выбор желаемой станции. Выбранный сигнал после усиления в усилителе высокой частоты поступает в смеситель. Следует добавить, что усилитель высокой частоты является резонансным усилителем и совместно с входными контурами, так же настраиваемыми, обеспечивает предварительную избирательность приемника. Кроме того, он создает необходимое усиление сигнала перед процессом преобразования, что положительно влияет на отношение сигнал/шум на выходе приемника.

В более простых схемах приемников усилитель высокой частоты не применяется, и тогда сигнал поступает в смеситель непосредственно из входных контуров. Одновременно к смесителю подводится напряжение высокой частоты от гетеродина. Гетеродин создает напряжение,частота которого больше частоты принимаемого сигнала на значение промежуточной частоты. Гетеродин перестраивается совместно с входными контурами и усилителем высокой частоты, поэтому его частота всегда больше частоты выбранного сигнала. В результате смещения обоих сигналов в смесителе присутствует сигнал с промежуточной частотой fпч, определяемый зависимостью fс fгет =fпч.

Сигнал промежуточной частоты усиливается в усилителе промежуточной частоты. Это перестраиваемый усилитель, работающий на постоянной частоте, с большим коэффициентом усиления и высокой избирательностью. Последний каскад усилителя промежуточной частоты управляет детектором. В результате детектирования получается низкочастотный сигнал, который после усиления в усилителе напряжения и усилителе мощности подается на громкоговоритель.

Рассмотренная структурная схема супергетеродинного радиоприемника является обобщенной схемой, относящейся к приемнику как амплитудно-модулированных, так и частотно-модулированных сигналов. В зависимости от типа приемника подвергаются изменению рабочий диапазон частот, схемное решение отдельных блоков, тип детектора и т. п.

Как осуществляется преобразование частоты?

Преобразование частоты осуществляется с помощью нелинейного элемента, например диода, электронной лампы, транзистора и т. п., а также вспомогательного сигнала высокой частоты с относительно большой амплитудой, подводимого от местного генератора.

Существует множество схемных решений, которые можно разделить на две группы. Если смесительный элемент и гетеродин представляют собой независимые схемы, то первая из них называется смесителем. Если одна лампа, обычно многосеточная, или транзистор выполняют одновременно функции гетеродина и смесительного элемента, то схема называется автодинным каскадом преобразования или смесителем.

Примером преобразовательного каскада служит транзисторная схема на рис. 11.25, которая генерирует колебания с частотой fгет (элементы генератора: L1, L2, С2). В цепь базы подводится сигнал с частотой fс. Из-за процесса преобразования, происходящего в цепи базы, возникает сигнал промежуточной частоты fгет fс. Схема одновременно является предварительным усилителем сигнала промежуточной частоты, поскольку контуры L3 и L4 настроены именно на эту частоту. При таком подходе усиление схемы называется усилением преобразования.



Рис. 11.25. Транзисторная схема преобразования частоты

Что такое автоматическая регулировка частоты?

Автоматическая регулировка частоты (АРЧ) является одним из методов стабилизации частоты генераторов. Схемы АРЧ применяются в радиоприемниках или телевизорах высшего класса для стабилизации частоты гетеродина. Благодаря этим схемам происходит автоматическое поддержание правильной настройки приемника на несущую частоту принимаемого сигнала.

Структурная схема АРЧ представлена на рис. 11.26.



Рис. 11.26. Структурная схема цепи автоматической регулировки частоты


Из-за колебаний напряжения питания, изменений температуры и т. п. частота генератора не постоянна, а подвергается некоторым изменениям, что проявляется в виде частотно-модулированного сигнала, а следовательно, и в сигнале промежуточной частоты, полученного в результате преобразования. На выходе усилителя промежуточной частоты (перед детекторным каскадом) помещают узкополосный резонансный контур, настроенный на промежуточную частоту. Ширина полосы контура достаточна для пропускания изменений частоты гетеродина. Выходное напряжение контура управляет дискриминатором ошибки. Если частота генератора имеет соответствующее номинальное значение, то выходное напряжение дискриминатора равно нулю. Если генератор отстроится от номинальной частоты, на нагрузке дискриминатора появится напряжение. Это напряжение будет положительным или отрицательным в зависимости от направления изменения частоты генератора. После тщательной отфильтровки выходное напряжение дискриминатора добавляется или вычитается из напряжения смещения реактивного контура (например, на емкостном диоде). Изменение напряжения смещения на реактивном контуре вызывает изменение вносимой емкости и в результате, поскольку реактивный контур подключен параллельно контуру генератора, подстройку частоты генератора в направлении ее номинального значения.

Каковы основные черты импульсной модуляции?

В системах с импульсной модуляцией используется тот факт, что для передачи информации не обязательно передавать ее непрерывно. Первым процессом в системах с импульсной модуляцией является генерация несущего колебания в виде последовательности периодически повторяющихся импульсов. Частота, с которой повторяются импульсы, называемая частотой дискретизации, должна быть достаточно высокой и зависеть от полосы передаваемого информационного сигнала. Обычно она в 2 раза больше наибольшей частотной составляющей информации. Полученная импульсная последовательность используется для созданий импульсов, на которые наложена передаваемая информация. Наложение информации на импульсную последовательность производится в схемах модуляции.

Самой важной чертой импульсной модуляции является временная дискретизация (временнóе квантование), заключающаяся в замене непрерывного временного колебания, например акустического, последовательностью дискретных значений (отсчетов) этого колебания, действующих в определенные отрезки времени. При передаче сигнала с импульсной модуляцией по радиоканалу импульсы, содержащие информацию о модулирующем сигнале, модулируют передатчик высокой частоты по амплитуде или частоте. В результате имеет место двухтактная модуляция.

Какие существуют виды импульсной модуляции?

Импульсы характеризуются многими параметрами: амплитудой, временным положением, длительностью, частотой и т. п. Благодаря этому имеется возможность применения многих видов импульсной модуляции. К наиболее часто встречаемым относится модуляция амплитуды, длительности или ширины импульсов, модуляция положения импульсов и импульсно-кодовая модуляция.

На рис. 11.27 представлены колебания, соответствующие различным видам импульсной модуляции.



Рис. 11.27. Методы импульсной модуляции:

а — модулирующий сигнал; б — модуляция амплитуды импульса; в — модуляция ширины импульса; г — модуляция положения импульса; д — кодовая модуляция


При амплитудно-импульсной модуляции в каждый момент дискретизации амплитуда импульса пропорциональна мгновенной амплитуде модулирующего сигнала. При широтно-импульсной модуляции импульсы имеют постоянную амплитуду, но их ширина (длительность) пропорциональна амплитуде модулирующего сигнала в момент дискретизации. Для получения изменения ширины импульсов можно сдвигать во времени передний или задний фронт либо оба фронта одновременно. Если средняя ширина импульса составляет 5 мкс, то в процессе модуляции она может меняться от 1 до 9 мкс.

При модуляции положения импульсов их положение изменяется вблизи среднего значения. Сдвиг соответствует амплитуде сигнала в момент дискретизации. Два последних вида модуляции относятся к системе временной модуляции импульсов.

Импульсно-кодовая модуляция имеет наилучшие показатели. Эта модуляция основывается на одновременном использовании принципа дискретизации, временного квантования и кодирования. Квантование — это процесс, в котором модулирующий сигнал с непрерывно меняющейся амплитудой заменяется дискретным — ступенчатым сигналом с заранее заданным числом уровней. Это означает, что импульсам, амплитуда которых лежит в определенном интервале, называемом шагом квантования, соответствует один общий уровень.

Кодирование заключается в том, что отдельным уровням квантованного сигнала приписывается соответствующий кодовый символ. На практике кодовая модуляция осуществляется с помощью цифровых кодов, чаще всего двоичных. Например, четырехбитовый (разрядный) двоичный код позволяет принять 24, т. е. 16, амплитудных уровней от 0 до 15.

Если группы импульсов, полученные в результате импульсно-кодовой модуляции, снова преобразовать в сигнал, то возникает некоторое расхождение между воспроизведенным сигналом и первоначальным. Это расхождение, называемое шумами квантования, уменьшается с ростом числа уровней квантования.

Из упомянутых видов импульсной модуляции реже всего используется амплитудно-импульсная из-за невыгодных шумовых свойств. Наибольшее значение в связи с развитием цифровой техники имеет импульсно-кодовая модуляция.

На чем основана система группообразования каналов?

Система группообразования (объединения и разделения) основана на одновременной передаче более чем одного сообщения на общей несущей частоте. Известны два метода группообразования — частотный и временной.

При частотном группообразовании каждому частотному каналу приписывается другая поднесущая частота. Каждое сообщение модулирует поднесущую. Модулированные поднесущие, суммированные соответствующим способом, модулируют затем высокочастотную несущую.

При временном группообразовании используется тот факт, что в системах с импульсной модуляцией длительность импульсов очень мала по сравнению с периодом дискретизации, т. е. имеется возможность размещения между импульсами, соответствующими одному сообщению, импульсов других сообщений. Это требует применения соответствующих коммутационных устройств. Последовательностью импульсов, представляющей много информационных каналов, модулируется затем высокочастотный передатчик.

Глава 12 ЦИФРОВАЯ ТЕХНИКА

Что такое цифровая техника?

Это отрасль техники (электроники), в которой сигналы, действующие в схемах, могут, как правило, иметь лишь два крайних (дискретных) уровня; высокий и низкий в отличие от аналоговых сигналов, которые имеют произвольные уровни и изменяются непрерывно (рис. 12.1).



Рис. 12.1. Пример цифрового (а) и аналогового (б) сигналов:

1 — высокий уровень; 2 — низкий уровень


Элементы схем (лампы, транзисторы, диоды) работают как электронные ключи и находятся в одном из двух крайних состояний: пропускания (включения) или запирания (выключения).

Главные достоинства цифровой техники: высокая надежность и очень высокая помехоустойчивость. Кроме того, «двухуровенность» сигналов часто исключает ошибки при передаче и воспроизведении информации, содержащейся в цифровом сигнале, поскольку распознавание двух крайних уровней сигнала является надежным даже при наличии больших искажений и помех.

Цифровая техника находит широкое применение в измерительных, устройствах, математических и вычислительных машинах, различных профессиональных электронных устройствах и все более широко в бытовой аппаратуре повседневного использования. Во многих случаях введение цифровой техники вместо аналоговой увеличивает надежность работы и точность (в частности, устраняется погрешность отсчета), упрощает конструкцию, уменьшает габаритные размеры и массу устройств, упрощает программирование, дает возможность регистрации информации. Используемые в цифровой технике схемы имеют также ряд преимуществ: их можно изготавливать в виде полупроводниковых интегральных микросхем.

Какая система счисления является основой цифровой техники и почему?

Основу цифровой техники образует двоичная система выражения цифр, называемая также бинарной системой, и связанный с ней математический аппарат, называемый булевой алгеброй.

В двоичной системе счисления любое число удается записать с помощью 1 или 0, например двоичное число 11101011 соответствует десятичному числу 235. Каждая позиция числа, записанного в двоичной системе счисления, представляет одно из двух состояний (1 или 0). В электронике имеются элементы (транзистор, лампа, диод), которые могут работать в двух состояниях: пропускания (включено) и непропускания (выключено). Например, цепь тока — состояние включения и состояние выключения, реле — состояние замыкания и состояние размыкания.

Относительно электрических сигналов двоичная система счисления также соответствует двум состояниям или двум уровням: высокому (более положительному) и низкому (менее положительному, нулевому или даже отрицательному). Если высокое состояние рассматривать как «1», а низкое как «0», то имеем так называемую положительную логику. При таком условии каждое из двух возможных состояний элемента или схемы условно обозначается следующим способом (рис. 12.2): состояние H (от англ. high—высокий) или 1 — да — элемент активный; состояние L (от англ. low — низкий) или 0 — нет — элемент пассивный. В случае отрицательной логики высоким уровням присваивается 0, а низким 1. В дальнейшем примем только положительную логику.

На практике невозможно осуществить такое условие, при котором все цифровые сигналы точно соответствуют одному из двух принятых уровней, и разрешаются некоторые допуски, так что следовало бы скорее говорить о двух интервалах, в которых находятся сигналы.



Рис. 12.2. Интерпретация уровней цифрового сигнала в положительной логике

Что такое двоичная система записи числа?

Объяснение двоичной системы проще всего провести сравнением с широко используемой в других областях десятичной системой.

Как известно, в десятичной системе для записи чисел используются десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Позиция (положение) каждой цифры в числе, записанном в десятичной системе, определяет ее значение, например цифра 3 в числе 235 определяет три десятка, т. е. 30, а цифра 3 в числе 2350 определяет три сотни, т. е. 300.

Для этих примеров можно записать:

235 = 2·102 + 3·101 + 5·100;

2350 = 2·103 + 3·102 + 5·101 + 0·100.

Как легко заметить, в десятичной системе каждое число записывается как последовательность коэффициентов при последовательных степенях основания этой системы.

В двоичной системе основание равно двум и имеются только две цифры 1 и 0. Последовательность цифр в двоичной записи числа представляет собой коэффициенты при соответствующих степенях двойки.

Например, имеем:

0 = 0·23 + 0·22 + 0·21 + 0·20, т. е. 0000;

1 = 0·23 + 0·22 + 0·21 + 1·20, т. е. 0001;

2 = 0·23 + 0·22 + 1·21 + 0·20, т. е. 0010;

3 = 0·23 + 0·22 + 1·21 + 1·20, т. е. 0011;

4 = 0·23 + 1·22 + 0·21 + 0·20, т. е. 0100;

15 = 1·23 + 1·22 + 1·21 + 1·20, т. е. 1111;

235 = 1·27 + 1·26 + 1·25 + 0·24 + 1·23 + 0·22 + 1·21 + 1·20 = (128 + 64 + 32 + 0 + 8 + 0 + 2 + 1), т. е. 11101011.

Что такое двоично-десятичная система счисления?

Как видно из приведенных выше примеров, двоичная запись, образованная из четырех цифр, это четырехбитовая запись. Она позволяет записать лишь числа от 0 до 15 (23 + 22 + 21 + 20 = 8 + 4 + 2 + 1), и на этом ее емкость исчерпывается. В связи с этим в цифровой технике часто пользуются и другими двоичными системами, представляющими модификацию «чистой» системы, т. е. двоичной системы, обозначаемой обычно как 8421.

Часто применяется двоично-десятичный код. Он основан на том, что каждую цифру числа, записанного в десятичной системе, записывают отдельно с помощью четырех битов. Поясним это на примере числа 235 (табл. 12.1).



Достоинством двоично-десятичной системы является упрощение замены чисел, записанных в десятичной системе, числами, записанными в двоичной системе, и наоборот.

Какие основные действия над двоичными числами?

Очевидно, что действия с двоичными числами отличны от операций, которые выполняют с числами, записанными в десятичной системе. Они очень просты и легки для запоминания.

Сложение чисел, записанных в двоичной системе, выполняется в соответствии со следующим правилом (или иначе алгоритмом):

0 + 0 = 0;

0 + 1 = 1;

1 + 0 = 1;

1 + 1 = 0 с переносом единицы на следующую позицию влево.

Последний алгоритм имеет сходство со сложением в десятичной системе, когда результат сложения больше или равен 10,

Вычитание осуществляется согласно следующему алгоритму:

0 — 0 = 0;

0 — 1 = 1 и затем со следующей позиции (похоже на ситуацию в десятичной системе);

1 — 1 = 1;

1 — 1 = 0.

Умножение чисел в двоичной системе производится очень просто. Вместо большой таблицы умножения в десятичной системе в двоичной имеем маленькую и легкую для запоминания таблицу

0·0 = 0;

1·0 = 0;

0·1 = 0;

1·1 = 1.

Деление двоичных чисел обычно заменяется умножением, и при этом используются приведенные выше алгоритмы.

Что такое логические элементы?

Логическим элементом, или функтором, называется элемент, принимающий значения 0 и 1. В нем существует определенная логическая связь между входным и выходным сигналами. Связь между сигналами определяется логической функцией. Для математического описания логической функции используется булева алгебра.

Основными логическими операциями этой алгебры являются: отрицание, логическое умножение (конъюнкция), логическое сложение (дизъюнкция). Существуют и другие логические операции.

Что такое операция логического умножения?

Обозначим через х некоторое утверждение или состояние И примем, что если х истинно, то можно записать х = 1, а если х ложно, то х = 0. Введем еще одно утверждение или состояние у и также примем, что у = 1, если у истинно, и у = 0, если у ложно.

Основой логического умножения

z = х·у,

где z — логическое произведение, причем «·» означает именно логическую операцию, а не арифметическое действие, является анализ утверждения, что х и у истинны.

Рассмотрим четыре возможных случая:

Случай 1. Примем: х = 1; у = 1. Это означает, что х истинно, у истинно. Очевидно, утверждение «х и у истинны» также является истинным, что записываем следующим образом: zх·у = 1.

Резюмируем, для х = 1 и у = 1 z = х·у = 1.

Случай 2. Примем: х = 1; у = 0. В этом случае сделанное утверждение z = х·у ложно, т. е. z = х·у = 0.

Резюмируем: для х = 1 и у = 0 z = х·у = 0.

Случай 3. Примем: х = 0; у = 1. В этом случае утверждение z = х·у ложно, как в случае 2, и можем записать для х = 0 и у = 0 z = х·у = 0.

Случай 4. Примем: х = 0; у = 0, и тогда z = х·у = 0, Рассмотренные случаи можем cвести в табл. 12.2



Как легко заметить, приведенная таблица идентична «таблице умножения», обязательной в двоичной системе и приведенной, выше.

Как осуществить функцию логического умножения?

Функция логического умножения, называемая также конъюнкцией, реализуется логическим элементом (функтором) И, элементом типа И и осуществляется в виде схемы, которая дает на выходе единицу тогда и только тогда, когда сигналы на обоих входах логического элемента имеют значение, соответствующее единице. Это совпадает с табл. 12.2. Самым простым способом такую функцию можно реализовать с помощью схемы, состоящей из двух реле, включенных последовательно (рис. 12.3). При этом можно получить четыре случая, описанных правилами логического умножения, причем один из них вызывает появление выходного сигнала.



Рис. 12.3. Пример простого осуществления функции И (а) и графическое обозначение элемента И (б)


На рисунке приведено функциональное обозначение элемента типа И, встречающееся в литературе и используемое для обозначений на электрических схемах. Чаще всего применяется функциональное обозначение.

Очевидно, что функцию И можно реализовать и другим способом — чисто электронным путем. Это будет рассмотрено ниже.

Что такое операция логического сложения?

Как в случае логического умножения исходим из некоторого сделанного утверждения. Для операции логического сложения — это утверждение, что х или у истинны» Запишем это следующим способом: z = х + у, причем знак «+» означает, как и ранее, знак «·», только логическую операцию, а не арифметическое действие. Такое утверждение является действительно истинным тогда, когда по крайней мере только х или только у истинны, а также и в случае, когда х и у одновременно истинны. Возможны четыре случая» сведенные в табл. 12.3:


Как осуществить функцию логического сложения?

Функция логического сложения, называемая также дизъюнктцией, реализуется логическим элементом типа ИЛИ в виде схемы, которая дает на выходе единицу, если это значение имеет по крайней мере один из входных сигналов. Это соответствует табл. 12.3. Самым простым способом такую функции можно реализовать с помощью схемы, образованной двумя реле, включенными параллельно, как показано на рис. 12.4. На этом же рисунке указано также графическое обозначение элемента типа ИЛИ.

Другие функциональные схемы, реализующие функцию ИЛИ, приводятся ниже.



Рис. 12.4. Пример осуществления функции ИЛИ (а) и условное графическое обозначение элемента ИЛИ (б)

Что такое операция отрицания?

Исходим из утверждения, что х ложно, выражаемого также сокращенно «не х» и записываемого следующим образом: z = х¯. Это утверждение правильно только тогда, когда х = 0. Следовательно, имеются два случая (табл. 12.4).


Как реализовать операцию отрицания?

Операция отрицания или инверсии, называемая также функцией НЕ или элементом типа НЕ, осуществляется в виде схемы, изменяющей логическое значение входного сигнала на противоположное, например схемы, дающей на выходе сигнал 1, когда на входе 0, и наоборот. Такую функцию можно реализовать, например, с помощью усилителя, инвертирующего фазу сигнала. Графическое изображение элемента типа НЕ представлено на рис. 12.5.



Рис. 12.5. Условное графическое обозначение элемента НЕ

Что такое элемент типа ИЛИ — НЕ?

Это логический элемент[26], реализующий отрицание логического сложения (функция Пирса) или, что в конечном результате равнозначно, реализующий произведение отрицаний; запишем это следующим образом:


Следовательно, это элемент, представляющий собой соединение двух функций, отсюда название ИЛИ — НЕ. Элемент ИЛИ — НЕ дает на выходе единицу тогда и Только тогда, когда на обоих входах присутствует сигнал 0. Это можно представить в виде табл. 12.5.



Графическое изображение элемента типа ИЛИ — НЕ показано на рис. 12.6. Как следует из записи функции, элемент ИЛИ — НЕ можно реализовать соединением элементов ИЛИ и НЕ либо соединением двух элементов НЕ с элементом И (рис. 12.7). Более того, можно показать, что при использовании элементов ИЛИ — НЕ удается реализовать любую переключающую функцию. Примеры практических решений элементов типа ИЛИ — НЕ приведены на рис. 12.10, в, 12.11.



Рис. 12.6. Условное графическое обозначение элемента ИЛИ — НЕ



Рис. 12.7. Функция И при использовании элементов типа ИЛИ — НЕ

Что такое элемент И — НЕ?

Это элемент, реализующий отрицание логического умножения (функцию Шеффера) или, что равнозначно в конечном результате, сумме отрицаний. Запишем эту функцию следующим образом:


Следовательно, это логический элемент, представляющий собой соединение двух функций, отсюда название И — НЕ. Из выражения следует, что элемент И — НЕ имеет на выходе сигнал 0 тогда и только тогда, когда оба входных сигнала имеют значения 1. Это можно свести в табл. 12.6.



Графическое изображение элемента И — НЕ представлено на рис. 12.8. Как следует из записи функции, элемент И — НЕ можно реализовать, соединив элемент И с элементом НЕ или два элемента НЕ с элементом ИЛИ. Применение элементов И — НЕ позволяет реализовать любые переключающие функции. Пример практического решения элемента И — НЕ приведен на рис. 12.10. б.



Рис. 12.8. Условное графическое обозначение элемента И — НЕ

Каково применение логических элементов в цифровой технике?

Простейшие логические элементы представляют собой основные схемы, входящие в сложные функциональные логические схемы, реализующие часто очень сложные функции. Такие схемы называются комбинационными логическими схемами. Реализация схемы, выполняющей определенное задание, т. е. определенную логическую функцию, обычно возможна в различных вариантах, отличающихся числом и типом используемых логических элементов. Например, как уже указывалось выше, даже реализация элементов ИЛИ — НЕ возможна в двух вариантах. Очевидно, что следует стремиться к тому, чтобы техническая реализация была проще и требовала наименьшего количества логических элементов. Такой процесс, включающий, в частности, упрощение алгебраической записи реализуемой логической функции и называемый процессом минимизации, проводится на этапе проектирования сборки с использованием прежде всего преобразований, следующих из булевой алгебры, например таких, как

— (сравните элемент ИЛИ — НЕ);

— (сравните элемент И — НЕ);

х·у + х·z = х·(у + z).

В процессе преобразования и упрощения логических функций часто пользуются законами коммутативности, ассоциативности и дистрибутивности, которые обязательны также и в булевой алгебре Кроме того, при реализации сложных функций часто удобнее пользоваться так называемыми картами Карно, являющимися графическим представлением произведений всех комбинаций имеющихся переменных. В частности, логические элементы используются для создания матричных схем, служащих для преобразования кодов, триггеров и разных схем, выполняющих сложные функции, например таких, как калькуляторы, цифровые машины, генераторы различных сигналов, электромузыкальные инструменты, электронные часы, измерительные приборы.

Что называется логическим вентилем?

Определение «вентиль» или «логический вентиль» в принципе относится к элементу И. Часто это название используется совсем для других логических элементов и схем, работающих в двоичной системе с двумя определенными уровнями сигналов. Иногда вентилем называют схему, в которой сигнал появляется на выходе только при подаче запускающего импульса. В общем случае схема вентиля может иметь больше двух входов.

Как реализуются логические схемы?

Существует много возможностей, зависящих от типа логической схемы и электронных элементов, которые выбраны для применения.

В простейшем случае используются диодные логические схемы, сокращенно обозначаемые ДЛ. Используются также диодно-транзисторные схемы (ДТЛ), транзисторно-транзисторные (ТТЛ), резистивно-транзисторные (РТЛ) и др.

От используемой технологии зависят переключающие свойства логической схемы, ее стоимость, надежность. Логические схемы чаще всего выполняют в виде интегральных микросхем, содержащих на одном кристалле по меньшей мере несколько логических элементов. Цифровые интегральные микросхемы, выпускаемые в ПНР и содержащие различные комплекты вентилей, обозначаются как UCY, например UCY7400, UCY74-A10N[27]

Как уже подчеркивалось, полупроводниковые элементы, используемые в логических схемах, работают в двух состояниях: включено либо выключено. Состояние «Включено» обычно соответствует области насыщения полупроводникового элемента, а состояние «Выключено» — области отсечки. Изменение состояний, (переключение) происходит скачком под воздействием внешних сигналов, представляющих уровень, соответствующий 1 или 0. Преимуществом полупроводникового элемента как переключающего элемента является очень малое внутреннее сопротивление, недостатком — инерционность, вызывающая задержки в отклике на быстрое изменение уровня в подводимом сигнале, связанное с происходящими в полупроводнике процессами.

Что такое диодные логические схемы?

Диодные логические схемы отличаются большой простотой. На рис. 12.9, а представлена схема элемента И. Если хотя бы на одном из входов имеется сигнал 0, то соответствующий диод смещается в прямом направлении. Через резистор протекает ток и выходное напряжение имеет низкий уровень, близкий к 0. Аналогично и в случае, когда оба входных сигнала являются нулями. Если на обоих входах присутствует сигнал 1, оба диода заперты и выходной уровень становится высоким, т. е. случай сигнала логической 1.

На рис. 12.9, б представлена схема элемента типа ИЛИ с тремя входами. Выходной сигнал, соответствующий логической 1, получается в том случае, когда по крайней мере один из входных сигналов х, у, z имеет значение 1. В других случаях через сопротивление не протекает ток и падение напряжения равно 0, а следовательно, выходной сигнал элемента ИЛИ соответствует логическому 0.



Рис. 12.9. Диодные логические схемы И — HЕ (а) и ИЛИ (б)

Что такое транзисторные логические схемы?

На рис. 12.10, а представлена транзисторная схема с непосредственной связью (гальванической), выполняющая функцию элемента типа НЕ. Транзистор работает по схеме ОЭ, инвертирующей фазу сигнала на 180°, благодаря чему z = х.

На рис. 12.10, б показана транзисторная схема, выполняющая функцию И — НЕ, на рис. 12.10, в — схема, выполняющая функцию ИЛИ — НЕ. Принцип работы обеих схем очень простой и не требует объяснения.

Достоинствами ТЛ-схем являются большая простота, высокое быстродействие, малое количество элементов. Недостатком — прежде всего необходимость подбора транзисторов с малым разбросом параметров, а также большее время выключения, особенно время ts.





Рис. 12.10. Транзисторные логические схемы, выполняющие функции НЕ (а), И — НЕ (б) и ИЛИ-HE (в)

Что такое диодно-транзисторные логические схемы?

В диодно-транзисторных решениях схемы элементов типа И, ИЛИ реализуются как диодные, схемы элементов типа НЕ — как транзисторные и лишь схемы элементов И-НЕ и ИЛИ-НЕ — как состоящие из диодов и транзисторов.

Что такое резисторно-транзисторные логические схемы?

На рис. 12.11 представлен элемент ИЛИ — НЕ в резисторно-транзисторном (РТЛ) схемном решении. Как легко заметить, он является модификацией элемента НЕ (см. рис. 12.10, а). Если на любом из входов, имеется 1, то транзистор находится в состоянии насыщения и на выходе элемента появится сигнал логического 0. К недостаткам РТЛ-схем относятся: медленное переключение, низкая граничная частота, а также ограничение возможности интеграции из-за наличия резисторов и конденсаторов, включенных параллельно резисторам R для увеличения скорости переключения.



Рис. 12.11. Логическая схема РТЛ, выполняющая функции ИЛИ — НЕ

Что такое транзисторно-транзисторные логические схемы?

На рис. 12.12 представлен пример построения схемы ТТЛ, выполняющей функции И — НЕ. Это решение соответствует интегральной схеме типа UCY7400 и 134ЛБ1, содержащей четыре вентиля.



Рис. 12.12. Логическая ТТЛ-схема, выполняющая функции И — НЕ на интегральных микросхемах типа UCY7400 или 134ЛБ


Схема работает следующим образом. Транзистор Т1 с двумя эмиттерами осуществляет логическое произведение (элемент И), а остальные транзисторы образуют выходной противотактный усилитель, осуществляющий функцию отрицания (элемент НЕ). Если хотя бы на одном из входов имеется сигнал логического 0 (ниже + 0,4 В), то транзистор Т1 находится в состоянии насыщения, а транзистор Т2 — в состоянии запирания. В этом случае резистор R3 соединяет базу транзистора Т1 с массой, что вызывает его запирание.

Транзистор Т3 в этих условиях работает как эмиттерный повторитель, поскольку нагрузочное сопротивление схемы и сопротивление транзистоpa T4 в состоянии запирания значительно больше, чем сопротивление R4. Выходной сигнал повторителя соответствует 1 (более +2,4 В).

При подаче сигнала, соответствующего 1, на оба входа вентиля эмиттерные переходы входного транзистора Т1 будут смещены в обратном направлении и ток базы этого транзистора будет протекать через коллекторный переход транзистора Т2, который находится в состоянии насыщения. В режим насыщения перейдет также транзистор T4 и запрется транзистор Т3. На выходе будет сигнал 0.

Соединения в корпусе интегральной микросхемы UCY7400 показаны на рис. 12.13.

Техника ТТЛ-схем отличается высоким быстродействием, простотой реализации, малым потреблением мощности и большой нагрузочной способностью. Благодаря этим достоинствам схемы ТТЛ являются наиболее распространенными логическими схемами.



Рис. 12.13. Соединения в интегральной микросхеме типа UCY7400

Что такое матричные логические схемы?

Это специальные коммутационные схемы со многими входами и выходами, причем на входах могут возникать все комбинации состояний, но только на одном из выходов может появиться сигнал, являющийся откликом на заранее определенную комбинацию входных состояний. Часто применяются диодные матричные схемы, которые используются в качестве декодеров или иначе дешифраторов например для преобразования информации из одного кода (двоичного) в другой (десятичный).

Принцип действия матричной схемы состоит в том, что состояние на отдельных входах влияет на смещение диодов, подключенных в матричной схеме к этим входам. В зависимости от этого смещения отдельные диоды открыты либо закрыты, что непосредственно влияет на выходные сигналы на отдельных выходах. Рассмотрим это на примере матричной схемы, изображенной на рис. 12.14.



Рис. 12.14. Матричная схема


Диоды управляются триггерами, которые на одном выходе дают напряжение, позволяющее открываться диодам, подключенным к этому выходу, а на другом выходе — напряжение, запирающее диоды, соединенные со вторым выходом. Если принять, что открыты диоды Д3 и Д4, соединенные с выходом 2 триггера I, и диоды Д7 и Д8, соединенные с выходом 4 триггера II, то закрыты диоды Д1 и Д2, соединенные с выходом 1 триггера I, а также диоды Д8 и Д6, соединенные с выходом 3 триггера II. Проводящие открытые диоды вызывают закорачивание выходных резисторов, соединенных с этими диодами, т. е. в рассматриваемом случае закорачивание резисторов R2, R3R4. Следовательно, выходной сигнал появляется лишь на резисторе R1, не имеющем соединения ни с одним из открытых диодов. Когда состояние триггеров таково, что смещение в направлении пропускания действует в точках 1 и 4, а смещение в направлении запирания — в точках 2 и 3, то выходной сигнал матричной схемы появляется только на резисторе R2.

Возможны еще случаи, когда выходной сигнал появляется только на резисторе R3 или R4. Таким образом, каждой из возможных комбинаций входных сигналов соответствует лишь один выходной сигнал, появляющийся на другом выходе. На этом принципе, используя, например, на входе матричной схемы четыре триггера, состояние которых представляют двоичные цифры, можно получить сигналы, пригодные для управления индикаторами, представляющими данное двоичное число в десятичной форме.

Что такое комбинационные логические схемы и схемы последовательного действия?

Комбинационными логическими схемами называются схемы, в которых выходной сигнал зависит только от входных сигналов, существующих в данный момент, т. е. схемы без «памяти». К комбинационным схемам относятся логические элементы И, НЕ, И — НЕ, ИЛИ — НЕ и др. Это схемы, работающие без ПОС. Отсюда вытекает их другое название: переключающие схемы без ОС или нерегенеративные схемы.

Схемами последовательного действия, или регенеративными, называются схемы, выходной сигнал которых зависит не только от входных сигналов, имеющихся в данный момент, но и от предыдущих входных сигналов. К этой группе схем относятся, в частности, триггеры, которые работают на принципе использования ПОС. Для построения схем последовательного действия можно использовать логические элементы И — НЕ и ИЛИ — НЕ.

Какие типы триггеров используются в цифровой технике?

В цифровой технике используются различные виды триггерных схем. Одновибратором, если речь идет о цифровой технике, можно считать элемент, который изменяет свое состояние на 1 только в том случае, когда вход тоже изменит свое состояние на 1. Выход остается в состоянии 1 в течение времени, зависящего от параметров самого триггера, и не зависит от длительности состояния 1 на входе.

Чаще всего используются схемы с двумя устойчивыми состояниями. Раньше применялись триггеры, собранные из дискретных элементов, в настоящее время широко используются триггеры, собранные из логических элементов в виде интегральных микросхем, изготовленных чаще всего по технологии ТТЛ-схем. Это дает возможность технической реализации составных триггерных схем, выполнение которых из дискретных элементов было бы слишком сложным и неэкономичным.

В технике ТТЛ-схем существуют, в частности, триггеры типов RS, D, Т, JK и др. На рис. 12.15 в качестве примера представлена схема мультивибратора, собранного из двух элементов НЕ.



Рис. 12.15. Схема автоколебательного мультивибратора на двух элементах типа НЕ

Что такое триггер RS?

Триггер RS, называемый также статическим или асинхронным, является относительно простым элементом, образованным из двух соединенных между собой элементов ИЛИ — НЕ (рис. 12.16, а) или И — НЕ. Такой триггер имеет два переключающих входа: вход S (от английского set), называемый установочным или записывающим, а также вход R (от английского reset), называемый входом сброса или стирающим[28]. Эти входы называются асинхронными, поскольку состояния на каждом из этих входов сразу же влияют на изменение состояния выходов. Триггер имеет два выхода Q и Q¯, принимающих противоположные логические значения. Рассмотрим работу триггера RS в четырех возможных случаях:

1. Если на обоих входах состояние 0, то состояние триггера зависит от логических величин, существовавших в предыдущем состоянии, либо является случайным, причем выходы Q и Q¯в соответствии с допущением всегда имеют противоположные значения.

2. Если на входе S состояние 1, а на входе R состояние 0, то для S = 1 и R = 0 имеем Q = 1 и Q¯ = 0. Такое состояние сохраняется также и в том случае, когда входы принимают значения, равные 0.

3. Если имеем R = 1 и S = 0, то Q = 0 и Q¯ = 1.

4. Если R = 1 и S = 1, но должно было бы быть Q = 0 и Q¯ = 0, однако это противоречит допущению, что один из выходов является отрицанием другого. Это означает, что рассматриваемый триггер не может применяться в схемах, в которых могут одновременно появляться единицы на обоих входах. Это запрещенное или неопределенное состояние.



Рис. 12.16. Схема триггера RS на двух элементах ИЛИ — НЕ (а) и условное графическое обозначение (б)


Работу триггера RS можно представить в виде таблицы состояний (таблицы истинности или таблицы переходов, табл. 12.6).



При использовании для построения триггера RS двух элементов И — НЕ запрещенное состояние (по сравнению с триггером на элементах ИЛИ — НЕ) соответствует условиям S = 0 и R = 0, а предыдущее состояние наблюдается для R = 1 и S = 1. Работа такого триггера представлена на рис. 12.17 в виде соответствующей временной диаграммы.



Рис. 12.17.Временное диаграммы для триггера RS, состоящего из двух элементов типа И — НЕ


Вариант триггера на элементах И — НЕ более экономичен, так как стоимость интегральных микросхем И — НЕ меньше стоимости схем ИЛИ — НЕ. Графическое обозначение триггера RS, которое можно встретить в литературе, показано на рис. 12.16, б.

Аналогичным способом можно рассмотреть работу триггера, собранного обычным способом из дискретных элементов, например триггера, представленного на рис. 10.28. Если входы R и S соединим с базами транзисторов Т1 и Т2 то выходы Q и Q¯ будем иметь на коллекторах Т1 и T2.

Что такое синхронные или тактируемые триггеры?

Это триггеры, имеющие два типа входов: синхронные и тактовые. Синхронные входы, называемые также программирующими или информационными, не вызывают мгновенного изменения состояния на выходе. Для того чтобы такое изменение могло наступить, необходимо присутствие тактового импульса на специальном входе, называемом также тактирующим или управляющим. Программирующих входов может быть несколько, тактирующий вход только один. Тактирующий вход позволяет триггеру работать синхронно во времени с другими схемами данного устройства.

Тактовые входы могут запускаться, в частности, фронтом подводимого импульса, либо соответствующим уровнем входного сигнала, либо путем использования метода «ведущий — ведомый» (англ. master — slave).

Встречаются различные обозначения входов триггеров на схемах. Асинхронный вход записи (установки) обозначается обычно W, S или Р, стирающий вход (сброс) — как Z, R или С. Синхронные входы имеют обозначения, зависящие от типа триггера, например J, К, D. Тактирующий вход обозначается буквой Т или С. Выходы триггеров обозначаются как Q и Q¯.

Что такое триггер D-типа?

Пример схемы триггера D-типа представлен на рис. 12.18, а. Это триггер, образованный, например, из одного элемента НЕ, двух элементов И и двух элементов ИЛИ и характеризующийся тем, что он передает информацию с синхронного входа D на выход Q в том случае, когда сигнал на тактирующем входе Т соответствует состоянию 1. Для Т = 0 вход D блокируется, т. е. триггер не считает сигнал с этого входа и он не влияет на состояние триггера, а ранее введенная информация сохраняется. Недостатком триггера D является передача на выход помех, имеющихся на входе при Т = 1.

В зависимости от типа тактирующего входа различают триггеры D, запускаемые фронтом импульса и уровнем. Условное графическое изображение триггера D показано на рис. 12.18, б.



Рис. 12. 18. Схема триггера D, состоящего из пяти элементов НЕ, И или ИЛИ (а), и условное графическое обозначение (б)

Что такое триггер Т?

Пример схемы триггера Т, образованного из четырех элементов И — НЕ, и его графическое обозначение представлены на рис. 12.19, а, б. Триггер Т меняет состояние выхода на противоположное, если состояние на входе изменяется с 0 на 1. Его можно также осуществить, используя, например, триггер D, если соединить вход D с выходом Q (рис. 12.20).



Рис. 12.19. Схема триггера Т, состоящего из четырех элементов И — НЕ (а), и условное графическое обозначение (б)



Рис. 12.20. Триггер Т, созданный на базе триггера D

Что такое триггер JK?

Триггер JK имеет два программирующих входа: J и К, один тактирующий вход, а также выходы, позволяющие предварительную установку триггера (R и S). Возможны различные практические реализации с разным составом логических элементов. Графическое изображение триггера JK показана на рис. 12.21.



Рис. 12.21. Условное графическое обозначение триггера JK


Таблица состояний триггера (табл. 12.7), включающая состояние выхода как перед подачей (Q0) тактового импульса на тактирующий вход, так и после его подачи (Q1), имеет следующий вид:



Из табл. 12.7 видно, что состояние, в котором устанавливается триггер, зависит не только от состояний, существующих в данный момент ка входах J и K, но и от состояния, в котором триггер находился перед этим. Если J = 1 и К = 1, то появление тактового импульса вызывает изменение состояний выходов, так же как для триггера Т при Т = 1. Если J = 0 (или К =0, или J = К = 0), то триггер JK работает так же, как триггер RS, и состояние на другом программирующем входе не имеет значения.

На рис. 12.22 приведены временные диаграммы, иллюстрирующие работу триггера JK.



Рис. 12.22. Временная диаграмма для триггера JK

Что такое триггер «ведущий — ведомый»?

Определение «ведущий — ведомый» происходит от англ. master-slave (или «хозяин — слуга» или «главный — вспомогательный») и относится к методу и схеме запуска тактирующего входа триггера, например типа JK. При запуске тактового входа, например фронтом импульса, существует сильная зависимость работы триггера от крутизны этого фронта и часто также от длительности импульса, т. е. в целом от его формы и искажений. Для устранения этих нежелательных влияний часто осуществляют двухступенчатый запуск с использованием, например, двух статических триггеров, главного и вспомогательного, включенных каскадно. Характерной чертой такого решения является отделение фазы записи информации на триггер от фазы передачи этой информации на его выход. Это означает также, что вход одного каскада блокируется на время записи информации на другой каскад, что увеличивает надежность работы триггера и значительно уменьшает влияние формы сигнала и искажений.

Триггер JK «ведомый — ведущий» сокращенно обозначается JKMS.

Каковы возможности применения триггеров?

Возможности применения триггеров RS, D, JK и др. в цифровой технике весьма велики. Одним из типичных применений являются запоминающие регистры и регистры сдвига. Регистры сдвига используются для преобразования последовательной информации в виде последовательности импульсов в информацию, закодированную параллельно (или наоборот), а также для сдвига или задержки последовательной информации. Пример регистра такого типа, собранного из триггеров D, представлен на рис. 12.33. а, б с временными диаграммами.




Рис. 12.23. Схема (а) и временные диаграммы (б) регистра сдвига на триггерах D


На вход Т подается тактовый сигнал. Запись и сдвиг информации слева направо происходят в моменты изменения с Т = 0 на Т = 1 и основываются на том, что в триггер А записывается входной сигнал х, представляющий, например, последовательные биты двоичного числа, а в каждый последующий триггер Б, В… записывается состояние предыдущего триггера. Иначе говоря, после каждого тактового импульса происходит сдвиг информации на одно место вправо. Выходы А, Б, В дают информацию, закодированную параллельно, а выход всего регистра — информацию, называемую последовательной задержанной.

Существуют также регистры с соединенными входом и выходом, называемые кольцевыми регистрами, в которых записанная информация может циркулировать.

Другим важным примером применения триггеров являются счетчики.

Как работает двоичный счетчик?

Свойство триггеров, основанное на том, что они могут находиться в определенном устойчивом состоянии, изменяющемся только при подаче тактового импульса, используется также для создания счетчиков. Эти счетчики используются для деления частоты и разных арифметических действий, в том числе для счета импульсов.

В гл. 10 обсуждалось применение триггеров в схемах делителей частоты. Теперь рассмотрим с точки зрения цифровой техники схему, используемую в качестве счетчика.

На рис. 12.24, а представлена схема двоичного счетчика, построенного из четырех триггеров Т или JK, соединенных последовательно.




Рас. 12.24. Схема двоичного счетчика, состоящего из четырех триггеров Т (а), и его временные диаграммы (б)


Предположим, что в начальном состоянии перед счетом все триггеры находятся в состоянии 0. Первый импульс, появляющийся на тактовом входе первого триггера А, вызывает своим отрицательным фронтом изменение состояния его выхода с 0 на 1. Состояние второго триггера Б в это время не подвергается изменению, поскольку, для того чтобы вызывать его изменение, необходимо появление на его тактовом входе отрицательного фронта. Триггеры С и D также остаются в состоянии 0. При втором импульсе на входе триггера А произойдет изменение состояния триггера А, а возникающий при этом отрицательный фронт изменит состояние триггера Б с 0 на 1. Триггеры В и Г пока остаются в состоянии 0. Изменения состояний триггеров при очередных импульсах на тактовом входе триггера А лучше всего можно проследить на временных диаграммах счетчика, представленных на рис. 12.24, б. Их также можно свести в следующую таблицу состоянии (табл. 12.8)



Можно легко заметить, что состояния триггеров, записанные в последовательности Г — В — Б — А, представляют число входных импульсов, записанных в двоичном коде 8-4-2-1. Временные зависимости для рассматриваемого счетчика представлены на рис. 12.24, б.

Обсуждаемая схема частот входит в качестве типовой в состав более крупных счетных систем. Применяются также и другие схемы счетчиков, в том числе с большим числом триггеров, считывающие импульсы в различных кодах. Для сигнализации о состоянии счетчика используются соответствующие дешифрирующие схемы (например, в виде матричной схемы), обеспечивающие сигналы, которые приводят в действие схемы индикаторов состояния счетчиков (например, на лампах тлеющего разряда или на электролюминесцентных диодах). Счетчики находят широкое применение, в частности, во многих электронных приборах, например в частотомерах.

Что такое сумматоры?

Это схемы, выполняющие операцию сложения двух чисел в двоичной системе. Поскольку другие арифметические операции можно также заменить сложением, например

35 — 25 = 35 + (— 25);

35·3 = 35 + 35 + 35,

то сумматоры используются для выполнения таких действий, как сложение, вычитание, деление, умножение. Сумматоры находят широкое применение в калькуляторах и цифровых электронных машинах. На практике сумматоры реализуются из простых логических элементов, таких как И — НЕ, ИЛИ — НЕ, и более сложных, например регистров сдвига, построенных из триггеров, которые в свою очередь выполняют из простых элементов чаще всего типа И — НЕ и ИЛИ — НЕ. Наиболее часто сумматоры собирают на интегральных микросхемах, изготовленных по технологии ТТЛ-схем.

Что такое запоминающие устройства?

Это схемы, служащие для хранения (запоминания) цифровой информации, закодированной в двоичном коде, и позволяющие воспроизводить эту информацию. Разработан большой набор интегральных микросхем, выполняющих функции запоминающих устройств.

Наипростейшими запоминающими устройствами обычно являются триггеры с двумя устойчивыми состояниями, которые образуют однобитовую ячейку памяти. Большую емкость памяти можно получить путем соединения друг с другом нескольких триггеров. Типичные интегральные микросхемы по технологии ТТЛ имеют емкость памяти 16 бит, а по технологии МОП — до 64 бит.

Существуют также и другие запоминающие устройства, например ферритовые, в которых информация запоминается в небольшом ферритовом сердечнике. Емкость ферритового запоминающего устройства зависит при этом от количества используемых сердечников.

Что такое преобразователи ЦАП и АЦП?

Преобразователи ЦАП (цифро-аналоговые) заменяют цифровой сигнал аналоговым. В общем можно говорить, что их работа основана на суммировании выходных напряжений усилителей, управляемых цифровым сигналом. Преобразователи АЦП (аналого-цифровые) служат для замены аналогового сигнала цифровым. Схемы этих преобразователей и принципы их действия достаточно сложны.

Глава 13 ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

Какие измерительные приборы применяют в электронике?

В электронике используют много различных измерительных приборов. Большинство из них составляют электронные измерительные приборы, построенные на интегральных микросхемах, лампах, транзисторах, диодах, резисторах, конденсаторах и т. п. Используемые методы измерений тесно связаны с методами и процессами, применяемыми в электронике и радиоэлектронике, например с генерацией колебаний, детектированием, модуляцией, преобразованием, цифровой и вычислительной техникой и т. п. Измерительная техника развивается вместе с электроникой и является наилучшим отражением современного состояния развития. Выпускаемые в настоящее время электронные измерительные приборы характеризуются высокой точностью, стабильностью и надежностью.

Трудно выполнить однозначное разделение измерительных приборов на группы, поскольку критериев деления может быть очень много. Возможно разделение по частотным диапазонам, например приборы для измерения в области низких, средних, высоких и сверхвысоких частот.

Имеются некоторые основные группы измерительных приборов, используемых в каждой области техники и, в частности, в электронике. К ним относятся измерительные генераторы, частотомеры, вольтметры и осциллографы. Эти наиболее характерные для электроники измерительные приборы и будут рассмотрены ниже.

Что такое измерительный генератор?

Измерительный генератор — это генератор синусоидальных колебаний с калиброванной частотой и уровнем мощности. Измерительный генератор обычно обеспечивает плавную перестройку частоты и входного напряжения. Исходя из назначения и диапазона частот различают измерительные генераторы звуковых частот, широкополосные (видеочастотные), а также высокочастотные и сверхвысокочастотные[29].

Что такое генератор звуковых частот?

Генератор звуковых частот позволяет получать синусоидальные сигналы с частотами в пределах 20 Гц — 20 кГц. В более совершенных генераторах диапазон частот расширен в область как более низких (до нескольких герц), так и более высоких частот (до нескольких сотен килогерц). В генераторе с расширенным диапазоном частот, как правило, весь диапазон разбивается на несколько поддиапазонов, которые выбираются с помощью переключателя.

Генераторы звуковых частот обычно представляют собой RC-генераторы с мостом Вина, с непрерывной перестройкой с помощью конденсаторов. Достоинства таких генераторов следующие: низкое содержание гармоник (0,1–0,5 %), хорошая стабильность частоты (10-3—10-4) и амплитуды, а также малые габаритные размеры и масса. Уровень выходного сигнала в генераторах звуковых частот достигает 10–50 В на ненагруженных выходных зажимах; выходное сопротивление можно изменять в пределах от единиц до 600 Ом.

Генераторы звуковых колебаний используют для испытаний различных низкочастотных цепей, элементов и блоков, теле- и радиоприемников, а также электроакустических устройств. Они служат для питания схем (мостов) при измерении индуктивности и емкости и являются источником сигнала, модулирующего генераторы высокой частоты.

Что такое генератор биений?

Название генератора происходит от способа получения сигналов с частотами, для которых предназначается генератор. Структурная схема генератора биений приведена на рис. 13.1.



Рис. 13.1. Структурная схема генератора биений


Прибор содержит два LC-генератора высокой частоты. Один из них генерирует колебания с постоянной частотой f1. Частоту второго генератора можно изменять в интервале от f2 до f2 + fmах, причем fmах — максимальная частота, на которую можно перестроить генератор. В результате объединения двух сигналов в смесителе на выходе фильтра, устраняющего ненужные составляющие, получают разностную частоту f1f2. Разностная частота может меняться в интервале от 0 до fmах и достигать значений 10–20 МГц.

Главным преимуществом генераторов биений является широкий диапазон перестройки, перекрываемый непрерывно без каких-либо переключений. К недостаткам относятся нестабильность разностной частоты, а также относительно высокий коэффициент содержания гармоник (несколько процентов). Генераторы биений используются для контроля частотных характеристик как селективных, так и апериодических схем, например широкополосных усилителей изображения.

Что такое генератор стандартных сигналов?

Это — высокостабильный генератор высокой частоты, заменяющий в лабораторных условиях естественные источники сигналов, например от передатчика. Многие типы генераторов перекрывают в сумме весь диапазон радиочастот от 50—100 кГц до десятков тысяч мегагерц. В зависимости от назначения генераторы стандартных сигналов выпускаются как генераторы с амплитудной (AM), частотной (ЧМ), с двумя видами модуляции (АМ/ЧМ), импульсной модуляцией (ИМ) и т. п.

Структурная схема одного из таких генераторов, перекрывающего диапазон радиочастот (50 кГц—30 МГц), представлена на рис. 13.2.



Рис. 13.2. Структурная схема генератора сигналов с AM модуляцией


Главным функциональным блоком является высокочастотный генератор, частота которого регулируется ступенчато в соответствии с поддиапазонами и плавно — с помощью перестраиваемого конденсатора в пределах одного поддиапазона. Точность установки и отсчета частоты лежит обычно в пределах 0,5–1,5 %. Сигнал с генератора подается на модулятор, в котором осуществляется амплитудная модуляция. Модулирующим сигналом может служить как сигнал от внутреннего генератора низкой частоты с частотой 1000 Гц, так и сигнал от внешнего генератора. С модулятором связан измеритель глубины модуляции. Выходное напряжение (0,1–1 В) можно уменьшить с помощью резистивного делителя вплоть до — 120 дБ (1 мкВ при исходном входном напряжении 1 В). Выходное сопротивление генератора мало, чаще всего 50 или 75 Ом.

Что такое генератор качающейся частоты?

Это определенный вид генератора сигналов, объединенного с осциллографом, в котором частота выходного сигнала не является постоянной. Специальная схема вызывает периодическое изменение частоты выходного сигнала таким образом, что она плавно изменяется в определенном интервале, а затем быстро возвращается к начальному значению. В это время амплитуда выходного сигнала остается постоянной.

Структурная схема генератора качающейся частоты представлена на рис. 13.3.



Рис. 13.3. Структурная схема генератора качающейся частоты


Генератор Г1 служит для установки средней частоты, а генератор Г2 модулируется по частоте с помощью емкостного диода. Диапазон перестройки генератора Г2 составляет ± ΔF.

Пилообразное модулирующее напряжение берется со схемы временной развертки встроенного осциллографа. После смешения в смесителе сигналов от обоих генераторов получают ЧМ сигнал разностной частоты. Это выходной сигнал генератора качающейся частоты, который через делитель напряжения подводится к исследуемой схеме, например усилителю или фильтру.

Амплитуда напряжения на выходе схемы изменяется в зависимости от его амплитудной характеристики. Напряжение с выхода исследуемой схемы после детектирования подается на вход Y осциллографа. Поскольку изменение частоты выходного сигнала генератора качающейся частоты синхронизировано с временной разверткой осциллографа, на экране получают изображение амплитудной характеристики исследуемой схемы. Область наблюдаемой на экране осциллографа характеристики схемы зависит от девиации частоты 2ΔF и может регулироваться в широком интервале. Для увеличения точности отсчета частоты на изображение, полученное на экране, обычно наносятся метки, соответствующие определенным частотам (например, через 10 или 1 МГц). Для этого генератор качающейся частоты снабжают генератором меток.

Частота генератора развертки, определяющего скорость изменения ЧМ сигнала, устанавливается около нескольких десятков герц. При больших частотах могут появиться искажения наблюдаемой характеристики из-за инерционности LC-контуров.

Генераторы качающейся частоты применяют главным образом для настройки резонансных усилителей и фильтров, особенно с большой шириной полосы. Известны генераторы качающейся частоты, применяемые в телевизионной технике, которые перекрывают полосу частот от 0 до 1000 МГц.

На каком принципе работает генератор прямоугольных колебаний?

Существуют два способа получения прямоугольных колебаний. Первый основан на формировании прямоугольного колебания из синусоидального. Синусоидальное колебание от встроенного или внешнего генератора подвергается последовательно усилению и ограничению для получения соответствующей формы.

Другой способ получения прямоугольного колебания основывается на непосредственной генерации колебания с формой, близкой к прямоугольной, в схеме мультивибратора. Получаемое после ограничения и усиления напряжение и представляет собой выходное колебание генератора.

Генераторы прямоугольных колебаний используются прежде всего для возбуждения импульсных схем и испытаний усилителей в динамическом режиме. Частотный диапазон генераторов прямоугольных колебаний простирается от 10–20 Гц до нескольких сотен килогерц. Крутизна фронта прямоугольного колебания составляет обычно 0,1–1 мкс.

Что характерно для генераторов импульсов?

Генераторы импульсов являются источниками прямоугольных или пилообразных импульсов, длительность которых значительно меньше периода повторения импульсов. Частота повторения импульсов лежит обычно в пределах диапазона звуковых частот. Крутизна фронтов импульсов, как правило, регулируемой длительности, составляет 50 не — 1 мкс.

Генераторы импульсов обеспечивают напряжения положительной и отрицательной полярностей, а также регулировку амплитуды в пределах от 1 мВ до 100 В с помощью делителя напряжения.

Как можно измерять частоту?

Измерения частоты могут выполняться различными методами. Выбор метода измерений зависит от диапазона измеряемых частот, а также от требуемой точности измерений. К наиболее известным методам измерений относятся резонансный метод, метод сравнения частоты с частотой другого генератора, а также методы, основанные на счете импульсов.

Для калибровки и проверки частотомеров используются источники высокостабильных эталонных частот, так называемые эталоны (стандарты) частоты, выполняемые в большинстве случаев на основе кварцевых генераторов.

Как работает абсорбционный частотомер?

Абсорбционный частотомер является самым простым прибором для измерения частоты. Принцип действия этого прибора иллюстрирует рис. 13.4.



Рис. 13.4. Принцип действия сорбционного частотомера


Приближение катушки частотомера к цепи, излучающей энергию в виде электромагнитной волны, вызывает возбуждение в резонансном контуре электродвижущей силы, которая достигает максимального значения при настройке этого контура в резонанс на измеряемой частоте. Перестройка контура осуществляется дискретно сменой или переключением катушек или плавно с помощью переменного конденсатора. Индикатором, обнаруживающим резонанс, является чаще всего магнитоэлектрический прибор с чувствительностью, соответствующей чувствительности полупроводникового диода. При максимальном отклонении стрелки прибора отсчет частоты осуществляется по шкале, расположенной на оси переменного конденсатора.

Прибор позволяет проводить измерения в широком диапазоне частот (5·104—1·108 Гц). Однако точность измерений невысока и составляет обычно 0,25—2 %.

Что такое гетеродинный частотомер?

В гетеродинном частотомере измеряемая частота fx определяется путем сравнения с эталонной частотой f0. Измерения осуществляют методом получения нулевых биений. На вход смесителя подаются одновременно два высокочастотных сигнала f0 и fx (рис. 13.5).

Если частоты f0 и fx близки по значению, то разностная частота на выходе смесителя может лежать в диапазоне звуковых частот, и ее будет слышно в наушниках. Измерение сводится к установлению равенства частот f0 = fx при нулевых биениях f0 fx = 0, характеризующихся пропаданием звука в наушниках.

В гетеродинный частотомер обычно встраивают кварцевый калибратор, который позволяет контролировать шкалу генератора и значительно увеличивать точность измерения, лежащую в пределах 10-4—10-5

К недостаткам гетеродинного частотомера относится погрешность в определении частоты, следующая из получения нулевых биений из-за гармоник сигналов с частотами f0 и fx.



Рис. 13.5. Структурная схема гетеродинного частотомера

Какой наиболее распространенный метод измерения частоты?

В настоящее время широко используется цифровое измерение частоты, которое обеспечивает быстроту и точность измерения. Частота как дискретная величина идеально подходит для измерения цифровым методом. Принцип действия цифрового частотомера основывается на подсчете импульсов за определенное время.

Как работает цифровой частотомер?

Структурная схема цифрового частотомера, действующего на принципе счета импульсов, сформированных из измеряемого колебания с частотой fx за стандартный временной интервал Тизм, представлена на рис. 13.6.



Рас 13.6. Структурная схема цифрового частотомера


Колебание, частота которого должна быть измерена, после усиления, если оно необходимо, превращается в последовательность импульсов с той же самой частотой fx. Внутренний эталон частоты (кварцевый генератор) совместно со схемами деления, которые одновременно обеспечивают регулировку частоты индикации, а также формирующей схемой генерирует последовательность эталонных импульсов fэт. Эталонные импульсы запускают схему управления, которой обычно является стробирующая схема. Задачей этой схемы является задание стандартного времени измерений Тизм, в течение которого вентиль открыт. Во время открывания вентиля на счетчик подаются импульсы с измеряемой частотой fx. Число подсчитанных импульсов за время Тизм указывает непосредственно на цифровых индикаторах счетчика значение измеряемой частоты fx в единицах частоты[30]. Частотомер также снабжен схемой сброса, которая перед отпиранием вентиля устанавливает счетчик в нулевое положение.

В настоящее время максимальная частота, измеряемая непосредственно с помощью счетчика, не превышает 250 МГц. Расширение частотного диапазона возможно путем использования на входе гетеродинных приставок, понижающих измеряемую частоту. Они позволяют расширить диапазон цифровых частотомеров до 1000 МГц.

Точность измерений с помощью цифрового частотомера составляет 10-5—10-8 и зависит от измеряемой частоты (чем меньше частота, тем ниже точность), а также времени измерения (чем оно дольше, тем выше точность).

Какого типа вольтметры применяют в измерительной технике?

Вольтметры, приборы для измерения напряжения, относятся к группе основных измерительных приборов. В настоящее время применяют вольтметры разных типов, которые отличаются входным сопротивлением, частотным диапазоном, типом индикатора и принципом работы.

В общем вольтметры можно разделить на неэлектронные (лишенные активных элементов, таких как электронные лампы или транзисторы) и электронные. Последние делятся на аналоговые, т. е. измеряющие непрерывным способом, и цифровые. Неточность аналоговых вольтметров составляет несколько процентов, а цифровых — на два порядка меньше.

Какова схема у электронного вольтметра постоянного тока?

Электронный вольтметр постоянного тока характеризуется очень высоким входным сопротивлением, около 107 Ом, поэтому он не нагружает измеряемую схему. Он состоит из усилителя постоянного тока и чувствительного магнитоэлектрического измерительного прибора — микроамперметра. Из многих схем достаточно широкое применение нашла схема, изображенная на рис. 13.7. Она содержит две лампы, потенциометр, включенный по мостовой схеме, и измерительный прибор, включенный между катодами обеих ламп. Измерительный прибор реагирует на разность токов обеих ламп, а его шкала прокалибрована непосредственно в вольтах.



Рис. 13.7. Схема лампового вольтметра


При отсутствии напряжения на входе прибора, когда к его входным зажимам не подключен источник постоянного напряжения, потенциометр устанавливается таким образом, чтобы стрелка измерительного прибора совпадала с нулем шкалы. Сетка одной из ламп заземлена, а измеряемое напряжение подается непосредственно на сетку второй лампы. Возникающая в результате разность токов обеих ламп пропорциональна входному, а отклонение стрелки прибора — измеряемому напряжению. Напряжение, требуемое для управления лампой, в нормальных условиях невелико, поэтому измеряемое напряжение подается на сетку лампы через делитель напряжения для того, чтобы уменьшить его до требуемого значения. Делитель напряжения снабжен переключателем, позволяющим менять коэффициент деления, т. е. диапазон измеряемых напряжений.

Можно ли использовать электронный вольтметр для измерения переменных напряжений?

Да. Достаточно перед рассмотренной выше схемой использовать выпрямитель и соответствующим образом прокалибровать прибор, например в эффективных значениях. Тогда вольтметр постоянного тока пригоден и для измерения переменных напряжений.

На каком принципе работает цифровой вольтметр?

Вольтметры с цифровым отсчетом служат прежде всего для измерения постоянного напряжения и обычно работают на принципе компенсации измеряемого напряжения с помощью эталонного напряжения. Из нескольких методов цифрового измерения напряжения самым простым является импульсно-временной метод. При использовании этого метода измерение напряжения осуществляется путем изменения его значения на определенный временной интервал, измеряемый на принципе счета импульсов. Структурная схема цифрового вольтметра, работающего на таком принципе, представлена на рис. 13.8, а.




Рис. 13.8. Цифровые измерения напряжения импульсно временным методом:

а — структурная схема; б — принцип действия


Основной составляющей частью является аналого-цифровой преобразователь, называемый в этом случае преобразователем напряжение — время. Преобразователь содержит измерительный компаратор, который сравнивает измеряемое напряжение Ux с линейно нарастающим эталонным напряжением Uэт, подводимым от специального генератора. В момент равенства напряжений Ux и Uэт на выходе схемы сравнения появляется импульс сравнения. Второй импульс сравнения появляется на выходе нулевого компаратора в момент перехода напряжения Uэт через нулевой уровень. Оба импульса открывают и закрывают вентиль, через который проходят образуемые генератором эталонных импульсов сформированные соответствующим образом узкие импульсы. Интервал времени между двумя импульсами сравнения является мерой величины Ux, а последовательность импульсов свидетельствует о знаке измеряемого напряжения. Число импульсов за время отпирания вентиля подбирается так, что напряжение непосредственно считывается по показаниям счетчика на цифровом индикаторе.

Современные цифровые вольтметры обеспечивают точность измерений 0,01—0,001 %.

Что такое осциллограф?

Осциллограф является одним из наиболее важных и самых универсальных измерительных приборов, поскольку дает возможность непосредственного наблюдения изменения напряжений и токов во времени на экране осциллографической трубки, являющейся основным элементом осциллографа.

Как работает осциллографическая трубка?

Упрощенная схема конструкции осциллографической трубки представлена на рис. 13.9.



Рис. 13.9. Упрошенная схема конструкции осциллографической трубки


Трубка является электронно-лучевым прибором с электрической фокусировкой и отклонением электронного луча. Источником электронов служит подогревный катод К. Плотность электронного луча регулируется с помощью изменения отрицательного смещения на управляющем электроде, называемом модулятором М. Электроны достигают необходимой скорости под воздействием электрического поля анодов A1 и А2, имеющих положительный потенциал относительно катода: 300 — 1000 В (А1) и 800 — 4000 В (А2). Фокусировка электронного потока в узкий пучок осуществляется с помощью электрического поля, действующего между анодами А1 и А2, образующими электронную линзу.

Экран трубки, покрытый люминофором, светится под влиянием бомбардировки потоком электронов, обладающих высокой энергией. Управление электронным потоком, т. е. придание ему желательного напряжения, осуществляется с помощью двух пар взаимно перпендикулярных отклоняющих пластин у1, у2 и x1, х2. При отсутствии напряжения на пластинах электронный поток распространяется по прямой и дает световое пятно в центре экрана. Если к паре пластин подводится напряжение, то между ними возникает электрическое поле, отклоняющее электронный поток в направлении пластины с положительным зарядом. При этом происходит перемещение светового пятна на экране на расстояние, пропорциональное подведенному напряжению.

Напряжение, подводимое к пластинам x1, х2, вызывает перемещение светового пятна по горизонтали, а напряжение, подводимое к пластинам у1, у2 — по вертикали. Если на пластины подать переменное напряжение с частотой более 15–20 Гц, то на экране наблюдается линия, в которую сливаются отдельные положения светового пятна.

Почему ка экране осциллографа появляется изображение исследуемого напряжения?

Изображение исследуемого напряжения на экране осциллографа возникает благодаря подаче на отклоняющие пластины осциллографической трубки двух напряжений. На горизонтальные отклоняющие пластины подается пилообразное напряжение — временная развертка. Период пилообразного напряжения состоит из рабочего периода, в течение которого напряжение меняется по линейному закону и вызывает равномерное перемещение электронного луча по экрану в горизонтальном направлении, а также времени возврата (обратного хода луча), за которое напряжение быстро возвращается к начальному значению. Напряжение, которое должно наблюдаться, подается на вертикальные отклоняющие пластины. Это напряжение отклоняет электронный луч вверх или вниз, причем отклонение луча пропорционально мгновенному значению исследуемого напряжения. Таким образом, в результате одновременного отклонения электронного луча в обоих направлениях следующие друг за другом мгновенные значения исследуемого напряжения откладываются по вертикали, начиная от левого края экрана, т. е. возникает изображение, по форме соответствующее данному напряжению.

Из каких основных узлов состоит осциллограф?

Осциллограф состоит из трех основных узлов: осциллографической трубки совместно со схемой ее питания, а также трактов вертикального Y и горизонтального отклонения X.

Тракт вертикального отклонения Y содержит усилители, задачей которых является усиление подводимого ко входу напряжения до значения, при котором происходит соответствующее отклонение электронного луча в осциллографической трубке. Эти усилители снабжены органами регулировки усиления, позволяющими выбрать удобный размер изображения на экране. Измерение отклонения луча упрощает расположенная перед экраном прозрачная пластина с нанесенной шкалой.

Тракт горизонтального отклонения X содержит генератор временной развертки, создающий рассмотренное ранее пилообразное напряжение, и усилители; частота генератора развертки регулируется, поскольку она должна быть подобрана — согласована с частотой наблюдаемого колебания. Для обеспечения стабильности изображения наблюдаемого колебания частота генератора развертки должна быть синхронна с частотой наблюдаемого колебания.

Органы регулировки усиления в тракте Y и частоты развертки в тракте X прокалиброваны соответственно в вольтах на деление вертикальной шкалы или микросекундах на деление горизонтальной шкалы. Это позволяет проводить быструю оценку амплитудных и временных зависимостей в наблюдаемом колебании. Упрощенная структурная схема осциллографа представлена на рис. 13.10.



Рис. 13.10. Упрощенная структурная схема осциллографа

Какие измерения можно проводить с помощью осциллографа?

С помощью осциллографа можно анализировать форму напряжения, что особенно важно в импульсной технике, т. е. можно измерять времена нарастания и спада импульса, его длительность, возможные пульсации, частоту повторения и т. п. Осциллограф дает возможность измерения напряжения, частоты (путем сравнения с колебанием известной частотой) и фазовых сдвигов; он также входит во многие сложные измерительные приборы, например, генераторы качающейся частоты.

Каковы основные параметры осциллографа?

Основными параметрами осциллографа являются: ширина полосы пропускания тракта Y, чувствительность тракта Y и скорость временной развертки. Выпускаемые в настоящее время осциллографы характеризуются шириной полосы 0—100 МГц, при чувствительности 5 мВ/дел. шкалы и скорость развертки от 1 с/дел. до 50 нс/дел.

* * *


Примечания

1

Действующее значение периодического колебания f(t) можно выразить интегралом


Для периодического синусоидального колебания имеем f(t) = Um·sin ωt, тогда Uд = (1/√2)·Um.

(обратно)

2

Среднее значение синусоидального тока можно выразить интегралом


(обратно)

3

Старая классификация по длине волны здесь не приводится. — Прим. ред.

(обратно)

4

Исключение составляют туннельные диоды, которые относятся к активным элементам.

(обратно)

5

Результирующий ток определяется зависимостью

(обратно)

6

В действительности передаваемая мощность меньше, поскольку в трансформаторе всегда имеются потери.

(обратно)

7

Подобные переходы электронов вызваны туннельным эффектом, зависящим от легирования и температуры перехода.

(обратно)

8

Движение электронов к аноду происходит в результате действия электрического поля в промежутке анод — катод, возникающего вследствие дополнительного источника постоянного напряжения.

(обратно)

9

Принято, что направление тока противоположно направлению движения электронов.

(обратно)

10

Точнее, если учесть напряжение на диоде, линия отсечки проходит на другом уровне, чем нулевая линия.

(обратно)

11

К коллектору транзистора типа n-р-n прикладывается «+» от источника постоянного напряжения, а типа р-n-р «-» — Прим. ред.

(обратно)

12

В отечественной литературе статические характеристики транзистора Iк = φ·(Uкэ) приводятся чаще взависимости от значения тока базы IбПрим. ред.

(обратно)

13

Электроны в транзисторе с каналом p-типа или дырки в транзисторе с каналом n-типа.

(обратно)

14

Искажения зависят от типа усилителя. В двухтактном усилителе мощности малые искажения можно получить при работе в классе В. В резонансном усилителе даже в классе С искажения могут быть малыми.

(обратно)

15

Это не относится к резонансным усилителям, которые могут давать малые искажения даже при заходе в область сеточных токов.

(обратно)

16

Степень интеграции в нашей литературе принято характеризовать количеством активных элементов (транзисторов) на кристалле. — Прим. ред.

(обратно)

17

Толщина пленок 1–2 мкм. — Прим. ред.

(обратно)

18

Толщина пленок в этом случае составляет 10–20 мкм и более. — Прим. ред.

(обратно)

19

Существуют также вакуумные декадные счетные лампы.

(обратно)

20

От англ. G (gain) усиление и B (bandwidth) ширина полосы

(обратно)

21

Произведение βfКu часто называют фактором обратной связи. — Прим. ред.

(обратно)

22

Речь идет о биполярных транзисторах. Полевые транзисторы имеют большое входное сопротивление — Прим ред.

(обратно)

23

В параметрических генераторах происходит преобразование энергии одной частоты в энергию колебаний другой частоты. — Прим. ред.

(обратно)

24

В этом случае выполняется условие баланса фаз. — Прим. ред.

(обратно)

25

Детектор называется линейным, если характеристика детектирования, устанавливающая связь между постоянной составляющей тока, диода и амплитудой входного сигнала, линейна. — Прим. ред.

(обратно)

26

Логические элементы, реализующие функции И, ИЛИ, НЕ, И — НЕ, ИЛИ — HЕ, относятся к одноступенчатой логике. — Прим. ред.

(обратно)

27

Классификацию интегральных микросхем и их обозначение можно найти в книге «Аналоговые и цифровые ИС» под ред. С. В. Якубовского Изд-во «Сов. радио». 1978 г. — Прим. ред.

(обратно)

28

В отечественной литературе вход S называют единичным входом триггepa, a R — нулевым. — Прим. ред.

(обратно)

29

К измерительным генераторам относятся и генераторы различных несинусоидальных колебаний. — Прим. ред.

(обратно)

30

Если время отпирания вентиля Тизм равно секунде или ее десятичным кратным.

(обратно)

Оглавление

  • Предисловие к русскому изданию
  • Глава 1 ОБЩИЕ СВЕДЕНИЯ. АТОМ И МАТЕРИЯ. ЭЛЕКТРИЧЕСКИЕ СИГНАЛЫ
  •   Что такое электроника?
  •   В каких областях науки, техники и народного хозяйства применяют электронные устройства?
  •   Когда началось развитие электроники?
  •   Какова структура атома?
  •   Что такое диаграмма энергетических уровней атома?
  •   Что такое твердое тело?
  •   Что такое диаграмма энергетических уровней в твердом теле?
  •   Что такое проводник?
  •   Что такое диэлектрик?
  •   Что такое полупроводник?
  •   Что такое несобственный полупроводник?
  •   Что такое полупроводник типа n?
  •   Что такое полупроводник типа р?
  •   Что такое термоэлектронная эмиссия?
  •   Что такое фотоэмиссия и фотопроводимость?
  •   Исчерпываются ли возможности получения свободных электронов термоэмиссией и фотоэмиссией?
  •   Что такое явление ионизации в газах?
  •   Какие токи существуют в электронике и как они используются?
  •   В каких единицах измеряется ток?
  •   В каких единицах измеряется напряжение?
  •   В каких единицах измеряется электрическое сопротивление?
  •   Что определяет закон Ома?
  •   В каких единицах измеряется мощность электрического тока?
  •   Что мы называем источником напряжения?
  •   Что мы называем источником тока?
  •   Что мы имеем в виду, когда говорим о согласовании источника с нагрузкой?
  •   Какие источники постоянного и переменного токов встречаются в электронике?
  •   Какими параметрами характеризуется переменный ток?
  •   Какие частоты переменного тока встречаются в электронике?
  •   Что называется пиковым, или амплитудным, значением переменного электрического колебания?
  •   Что называется действующим значением переменного тока?
  •   Что такое среднее значение переменного колебания?
  •   Что такое мгновенное значение переменного колебания?
  •   Что такое синусоидальное или гармоническое колебание?
  •   Что такое несинусоидальные колебания?
  •   Что такое колебание прямоугольной формы?
  •   Что такое нелинейные искажения сигнала?
  •   Что такое колебание пилообразной формы?
  •   Что такое шумовое колебание?
  •   Что такое электрический импульс?
  •   Какие параметры характеризуют электрический импульс?
  •   Что называется временем формирования фронта импульса?
  •   Что называется выбросом импульса?
  •   Что такое спектр электрических сигналов?
  • Глава 2 ИЗЛУЧЕНИЕ И ВОЛНЫ. СОПРОТИВЛЕНИЕ. ЭЛЕМЕНТЫ И ЦЕПИ
  •   Что такое электромагнитное излучение?
  •   Что такое звуковые волны?
  •   В каких единицах измеряется уровень звука?
  •   Что такое световое излучение?
  •   Какие параметры определяют свет?
  •   Что такое полное сопротивление?
  •   Какое электрическое сопротивление имеет конденсатор?
  •   Какое электрическое сопротивление имеет катушка индуктивности?
  •   Из каких элементов состоят электрические цепи?
  •   Резистор как элемент схемы
  •   Что можно сказать о конденсаторе как элементе цепи?
  •   Как рассчитывается реактивное сопротивление конденсатора?
  •   Как маркируются резисторы и конденсаторы?
  •   Что можно сказать о катушке индуктивности как элементе схемы?
  •   Трансформатор как элемент цепи
  •   Какие преобразователи встречаются в электронных устройствах?
  •   На каком принципе работает микрофон?
  •   На каком принципе работает громкоговоритель?
  •   На каком принципе работают преобразователи изображения?
  •   Что такое электронные цепи и схемы?
  •   Что такое линейные и пассивные цепи?
  •   Что такое интегрирующая цепь?
  •   Что такое дифференцирующая цепь?
  •   Что такое цепь с параллельным резонансом?
  •   Что такое цепь с последовательным резонансом?
  •   Что такое частотная характеристика?
  •   Что такое линейные искажения цепи?
  •   Что такое ширина полосы пропускания цепи?
  •   Что такое импульсная характеристика цепи?
  • Глава 3 ДИОДЫ
  •   Что такое диод?
  •   Что такое плоскостной диод?
  •   Какие явления происходят в р-n переходе без смещения?
  •   Какие явления происходят в р-n переходе при подаче смещения?
  •   Каковы свойства плоскостного диода?
  •   Что такое точечный диод?
  •   Что такое диод Шотки?
  •   Какая разница в свойствах плоскостного и точечного диодов?
  •   Что такое идеальный диод?
  •   Что такое полупроводниковый стабилитрон?
  •   Что такое туннельный диод?
  •   Что такое варакторный диод?
  •   Что такое р-i-n диод?
  •   Что такое полупроводниковый фотодиод?
  •   Что такое электролюминесцентный диод?
  •   Как обозначаются полупроводниковые диоды?
  •   Каковы принцип действия и свойства вакуумного диода?
  •   Что такое газоразрядные диоды?
  •   Где применяется диод?
  •   Каковы динамические свойства полупроводникового диода?
  •   Как используется диод для ограничения сигнала?
  •   Как используется диод для выпрямления переменного напряжения?
  •   Как используются диоды для детектирования сигналов?
  •   Что такое диодные вентили?
  • Глава 4 ТРАНЗИСТОРЫ И ТРИОДЫ. ОСНОВНЫЕ СХЕМЫ
  •   Что такое транзистор?
  •   Что такое биполярный плоскостной транзистор?
  •   Как работает биполярный транзистор?
  •   Почему биполярный транзистор усиливает сигналы?
  •   Как обозначаются токи и напряжения в транзисторных схемах?
  •   В каких схемах включения биполярный транзистор работает как усилитель?
  •   Что можно сказать о транзисторе как элементе схемы?
  •   Что можно сказать о транзисторе как четырехполюснике?
  •   Что такое четырехполюсник типа h?
  •   Каков смысл величины и обозначения параметров тока h?
  •   Что такое y-параметры четырехполюсника?
  •   Что такое схема с общей базой и каковы ее свойства?
  •   Что называют статическими характеристиками транзистора?
  •   Каковы статические характеристики транзистора в схеме ОБ?
  •   Что такое схема с общим эмиттером и каковы ее свойства?
  •   Какие статические характеристики транзистора в схеме ОЭ?
  •   Что такое схемы с общим коллектором и каковы ее свойства?
  •   Какая разница в свойствах схем ОБ, ОЭ, ОК?
  •   Что такое рабочая или нагрузочная характеристика транзистора?
  •   Что можно сказать о рабочей характеристике схемы ОБ?
  •   Что можно сказать о рабочей характеристике схемы ОЭ?
  •   Что такое полевой транзистор?
  •   Каковы структура и принцип работы полевого транзистора?
  •   Что такое статическая характеристика МОП транзистора?
  •   Каковы структура и принцип действия полевого транзистора с р-n переходом?
  •   Что такое статическая характеристика полевого транзистора с р-n переходом?
  •   Каковы свойства полевых транзисторов?
  •   В каких схемах работает полевой транзистор и какова его эквивалентная схема?
  •   Чем отличаются свойства биполярных и полевых транзисторов?
  •   Что можно сказать о рабочей характеристике схемы с ОИ?
  •   Чем следует руководствоваться при выборе рабочей точки транзистора?
  •   Как влияет температура на свойства транзистора и положение рабочей точки?
  •   Что такое схемы питания транзисторов?
  •   Какие самые простые схемы питания транзисторов?
  •   Какие существуют схемы питания транзисторов с делителем напряжения?
  •   Что такое схемы стабилизации рабочей точки?
  •   Чем характеризуется схема питания со стабилизацией в цепи эмиттера?
  •   Чем характеризуется схема стабилизации рабочей точки на основе коллекторной связи?
  •   Какие другие схемы стабилизации рабочей точки встречаются па практике?
  •   Как работает транзистор в диапазоне высоких частот?
  •   Какие параметры транзистора определяют его пригодность для работы в высокочастотных схемах?
  •   Каковы шумовые свойства транзисторов?
  •   На чем основывается работа транзистора при большом сигнале?
  •   Что такое усилители классов А, В, С?
  •   Зачем транзисторы иногда размещают на радиаторах?
  •   Какие существуют области работы транзистора?
  •   Как работает транзистор в режиме переключения?
  •   Что такое управление транзистора током, напряжением и зарядом?
  •   Как обозначаются транзисторы?
  •   Что такое вакуумный триод?
  •   На каком принципе триод усиливает электрические сигналы?
  •   Как обозначают токи и напряжения в схемах на лампах?
  •   В каких схемах триод работает как усилитель?
  •   Какими параметрами характеризуется триод?
  •   Что можно сказать о триоде как элементе схемы?
  •   Что такое схема ОК и каковы ее свойства?
  •   Каковы статические характеристики триода в схеме с ОК?
  •   Что такое схема ОА и каковы ее свойства?
  •   Что такое схема ОС и каковы ее свойства?
  •   Как выбирают рабочую точку триода?
  •   Как подается смещение на электроды триода?
  •   На чем основана работа триода в диапазоне высоких частот?
  •   Как работает триод в режиме переключения при большом сигнале?
  •   Какие шумовые свойства имеет триод?
  • Глава 5 ДРУГИЕ ТИПЫ ПОЛУПРОВОДНИКОВЫХ И ВАКУУМНЫХ ПРИБОРОВ
  •   Что такое меза-транзистор?
  •   Что таксе планарный транзистор?
  •   Что такое однопереходный транзистор?
  •   Что такое полевой транзистор с двумя затворами?
  •   Что такое транзистор с неоднородной базой?
  •   Что такое фототранзистор?
  •   Что такое диодный тиристор?
  •   Какой вид имеет вольт-амперная характеристика диодного тиристора?
  •   Что такое симметричный диодный тиристор?
  •   Что такое триодный тиристор?
  •   Каковы параметры тиристоров?
  •   Что такое запираемый тиристор?
  •   Что такое тетродный тиристор?
  •   Что такое симистор?
  •   Для каких целей используются тиристоры?
  •   Что такое фототиристор?
  •   Что такое микроэлектроника?
  •   Что такое интегральные микросхемы?
  •   Что такое интегральные схемы малой и большой степени интеграции?
  •   Какие преимущества дает применение интегральных микросхем?
  •   Какие типы интегральных микросхем встречаются в электронике?
  •   Что такое полупроводниковые интегральные микросхемы?
  •   Как выполняются диоды и транзисторы в полупроводниковых интегральных микросхемах?
  •   Как создаются резисторы в полупроводниковых интегральных микросхемах?
  •   Как изготавливают конденсаторы в полупроводниковых интегральных микросхемах?
  •   Как создаются индуктивности в полупроводниковых интегральных микросхемах?
  •   Что такое тонкопленочные интегральные микросхемы?
  •   Что такое толстопленочные интегральные микросхемы?
  •   Что такое гибридные интегральные микросхемы?
  •   Что такое термистор?
  •   Что такое варистор?
  •   Что такое тиратрон?
  •   Какие многосеточные лампы применяются в электронике?
  •   Как работает тетрод и какова его характеристика?
  •   Как работает пентод и каковы его характеристики?
  •   Как работает электронно-лучевая трубка?
  •   Где применяются электронно-лучевые трубки?
  •   Что такое кинескоп?
  •   Что такое запоминающие трубки?
  •   Что такое передающие трубки?
  •   Что такое декадные счетные лампы?
  •   Что такое клистроны и магнетроны?
  •   Что такое датчики на эффекте Холла?
  • Глава 6 ВЫПРЯМИТЕЛИ
  •   Что такое выпрямление электрических колебаний?
  •   На каком принципе осуществляется выпрямление?
  •   Какие электронные элементы используют для выпрямления?
  •   Что называется выпрямителем?
  •   Что называется однополупериодным выпрямителем?
  •   Что называется двухполупериодным выпрямителем?
  •   Что такое выпрямитель на мостовой схеме?
  •   Что называется коэффициентом пульсаций выпрямителя?
  •   Что называется коэффициентом использования трансформатора в выпрямительной схеме?
  •   Что называется коэффициентом полезного действия выпрямителя?
  •   Что называется частотой пульсаций выпрямителя?
  •   Что следует из сравнения основных схем выпрямителей?
  •   Какую роль играют фильтры, расположенные на выходе выпрямителей?
  •   Какие типы фильтров используются на выходе выпрямителей?
  •   Что называется фильтром с емкостным входом?
  •   Что называется фильтром с индуктивным входом?
  •   Что такое фильтры нижних частот типов RC и LC и каково их применение?
  •   Какие номиналы элементов L, R и С применяются в фильтрах?
  •   Что такое активный фильтр?
  •   Что такое активный фильтр с транзистором?
  •   Что такое нагрузочная характеристика выпрямителя?
  •   Что следует из сравнения нагрузочных характеристик выпрямителей?
  •   Что такое выпрямитель по параллельной схеме?
  •   Что такое умножитель напряжения?
  •   Что такое схема удвоителя напряжения?
  •   Что такое схемы многократных умножителей напряжения?
  •   Что такое управляемый выпрямитель и как он работает?
  •   Какое применение в выпрямителях находит симметричный тиристор?
  •   Что такое стабилизирующие схемы?
  •   На каком принципе работает стабилизатор напряжения?
  •   Что такое стабилизатор напряжения с лампой тлеющего разряда?
  •   Что такое стабилизатор напряжения с полупроводниковым стабилитроном?
  •   Что такое последовательный стабилизатор с электронной лампой?
  •   Что такое последовательный стабилизатор с регулировкой напряжения?
  •   Что такое последовательный стабилизатор на транзисторе?
  •   Что такое последовательный стабилизатор с дополнительным усилителем?
  •   Что такое импульсный стабилизатор?
  •   Как термистор применяется в схемах стабилизации?
  •   Где в схемах стабилизации используют варисторы?
  •   Что такое стабилизатор на магнитном усилителе?
  •   Что такое ферромагнитные и феррорезонансные стабилизаторы?
  •   На каком принципе работает стабилизатор тока?
  •   Какая схема у стабилизатора тока?
  •   Какие методы защиты применяются в схемах питания?
  •   На чем основан процесс, обратный выпрямлению переменного напряжения?
  • Глава 7 НЕРЕЗОНАНСНЫЕ УСИЛИТЕЛИ
  •   Что такое усилитель?
  •   Как классифицируются усилители?
  •   Что такое нерезонансные усилители?
  •   Какую принципиальную схему имеет однокаскадный усилитель и каковы его основные параметры?
  •   Что такое частотная характеристика усилителя?
  •   Что такое ширина полосы пропускания усилителя?
  •   Что понимается под терминами: диапазоны низких, средних и высоких частот усилителя?
  •   Что такое искажения, вносимые усилителем?
  •   Что такое амплитудные линейные искажения усилителя?
  •   Что такое линейные фазовые искажения усилителя?
  •   Что такое динамическая характеристика усилителя?
  •   Что такое нелинейные искажения?
  •   Что такое каскадное соединение усилителей?
  •   Что такое межкаскадная связь?
  •   Что такое резистивный усилитель с емкостной связью?
  •   От чего зависит верхняя граничная частота в резистивном усилителе с емкостной связью?
  •   От чего зависит нижняя граничная частота в резистивном усилителе с емкостной связью?
  •   Как работает ламповый резистивный усилитель и какова его схема?
  •   Что такое произведение коэффициента усиления на ширину полосы пропускания?
  •   Что такое широкополосный усилитель?
  •   Что такое временная характеристика усилителя?
  •   На чем основана компенсация усилителя?
  •   Каковы цепи компенсации усилителя в диапазоне высоких частот?
  •   Какова схема компенсации усилителя в диапазоне низких частот?
  •   Что такое усилитель постоянного тока?
  •   Какова схема наиболее простого усилителя постоянного тока?
  •   Что такое усилитель постоянного тока с противоположной симметрией?
  •   Что такое усилитель с преобразованием и каков принцип его работы?
  •   Как работает усилитель с трансформаторной связью?
  •   Каковы достоинства трансформаторной связи?
  •   Какие недостатки у трансформаторной связи?
  •   Когда используется трансформаторная связь?
  •   Какими параметрами характеризуется усилитель мощности?
  •   Что такое несимметричный усилитель мощности класса А?
  •   Как работает двухтактный усилитель?
  •   Какие преимущества имеет двухтактный усилитель?
  •   Может ли двухтактная схема работать без выходного трансформатора?
  •   Что такое симметрирующий усилитель?
  •   Каким образом можно получить большое входное сопротивление усилителя?
  •   Что такое дифференциальный усилитель?
  •   Где применяют дифференциальные усилители?
  •   Что такое каскод?
  •   На чем основана регулировка усиления и где она применяется?
  •   Что такое развязывающая схема?
  • Глава 8 ОБРАТНАЯ СВЯЗЬ
  •   Что такое обратная связь?
  •   На чем основана ОС в электронных схемах?
  •   Что такое положительная обратная связь?
  •   Что такое отрицательная обратная связь?
  •   Каково влияние ООС на усиление усилителя?
  •   Вызывает ли ООС расширение полосы пропускания усилителя?
  •   Можно ли с помощью ООС формировать амплитудную характеристику усилителя?
  •   Оказывает ли влияние ООС на нелинейные искажения, помехи и шумы, вносимые усилителем?
  •   Какое влияние оказывает ООС на стабильность усиления?
  •   Влияет ли ООС на входное и выходное сопротивления усилителя?
  •   Может ли ОС охватывать более одного каскада?
  •   Устойчивы ли схемы с ООС?
  •   Каковы преимущества и недостатки ООС?
  •   Как можно классифицировать цепи ООС?
  •   Что такое усилитель с параллельной ООС по напряжению?
  •   Что такое усилитель с последовательной ОС по напряжению?
  •   Является ли эмиттерный повторитель схемой с ООС?
  •   Что такое усилитель с последовательной ОС по току?
  •   Что такое усилитель с параллельной ОС по току?
  •   Какой усилитель называется операционным?
  •   Как графически изображается операционный усилитель?
  •   Какими свойствами должен обладать идеальный операционный усилитель?
  •   На чем основана работа операционных усилителей как усилительных схем?
  •   Может ли операционный усилитель выполнять математические операции?
  •   Может ли операционный усилитель работать как компаратор?
  •   Каковы другие применения операционных усилителей?
  • Глава 9 РЕЗОНАНСНЫЕ УСИЛИТЕЛИ
  •   Какие усилители называются резонансными?
  •   Где применяют избирательные усилители?
  •   Что понимается под избирательностью резонансного усилителя?
  •   Какой усилитель называется узкополосным, а какой широкополосным?
  •   Какими параметрами характеризуется резонансный усилитель?
  •   Какие активные элементы применяют в резонансных усилителях?
  •   Какие типы нагрузок применяют в резонансных усилителях?
  •   Как можно классифицировать резонансные усилители?
  •   Какой резонансный усилитель наиболее простой?
  •   Можно ли усилитель с одиночным контуром непосредственно сопрягать со следующим каскадом?
  •   Как работает простейший резонансный усилитель с двухзвенным фильтром?
  •   Какие преимущества у двухзвенного фильтра?
  •   Только ли с помощью взаимной индуктивности М можно осуществить связь контуров в фильтре?
  •   Применяют ли в резонансных усилителях многозвенные фильтры?
  •   Как изменяется ширина полосы пропускания усилителя в результате каскадного соединения отдельных ступеней?
  •   Какой усилитель называется синхронным и каковы его свойства?
  •   Что такое асинхронный усилитель?
  •   Как работает асинхронный усилитель?
  •   Как работает усилитель с расстроенными двухзвенными фильтрами?
  •   Что такое усилители высокой и промежуточной частот?
  •   Что такое резонансный усилитель, работающий в режиме класса С?
  •   Как работает усилитель класса С?
  •   Какое основное преимущество усилителя класса С?
  •   Что такое умножитель частоты?
  • Глава 10 ГЕНЕРАТОРЫ
  •   Что такое генератор?
  •   На какие основные группы можно разделить генераторы?
  •   Какими параметрами характеризуется генератор?
  •   Как можно разделить генераторы синусоидальных колебаний?
  •   Как действует простейший генератор на резонансном контуре?
  •   Как действует LC-генератор с внешней ОС?
  •   Что такое генератор с индуктивной ОС?
  •   Каковы схемные варианты генератора с индуктивной ОС?
  •   Что такое трехточечный генератор с индуктивной ОС?
  •   Что такое трехточечный генератор с емкостной ОС?
  •   В чем разница между генератором по схеме Клаппа и трехточечным генератором с емкостной связью?
  •   Что таксе генератор с резонансными контурами на входе и выходе?
  •   Какие факторы вызывают нестабильность частоты?
  •   Как можно повысить стабильность частоты генератора?
  •   На чем основана автоматическая регулировка амплитуды колебаний?
  •   Что такое кварцевый генератор?
  •   От чего зависят свойства кварцевого резонансного контура?
  •   Что такое кварцевый генератор Пирса?
  •   Что такое RС-генератор?
  •   Что такое RС-генератор с фазосдвигающей цепью?
  •   Что такое RС-генератор с мостом Вина?
  •   Как получают несинусоидальные колебания?
  •   Что такое релаксационные генераторы?
  •   Как работает блокинг-генератор?
  •   Какую схему называют нестабильным генератором?
  •   Что такое автоколебательный мультивибратор?
  •   Как работает автоколебательный мультивибратор в схеме с катодной (эмиттерной) связью?
  •   Как регулируется частота колебаний в автоколебательном мультивибраторе?
  •   Что такое одностабильные (ждущие) генераторы?
  •   Что такое одновибратор и как он работает?
  •   Что такое генераторы с двумя устойчивыми состояниями?
  •   Что такое триггеры?
  •   Что такое спусковые схемы?
  •   Что такое триггер Шмитта?
  •   Как работает триггер Шмитта?
  •   Что такое генератор Миллера?
  •   Что такое генератор пилообразного напряжения с ООС?
  •   Каково применение релаксационных генераторов?
  •   На чем основана синхронизация генераторов?
  •   Что такое схема делителя частоты на триггерах?
  •   Какое применение находят операционные усилители в генерировании несинусоидальных колебаний?
  • Глава 11 МОДУЛЯЦИЯ И ДЕТЕКТИРОВАНИЕ
  •   Что такое модуляция?
  •   Когда применяется модуляция?
  •   Какие существуют виды модуляции?
  •   Каковы основные свойства амплитудной модуляции?
  •   На каком принципе работают амплитудные модуляторы?
  •   Какие существуют схемы амплитудных модуляторов?
  •   Что такое однополосная модуляция и как ее получают?
  •   Что такое детектирование?
  •   Каков принцип работы амплитудного детектора?
  •   Как действует линейный диодный детектор?
  •   Какие критерии выбора постоянной составляющей RС-цепи в диодном детекторе?
  •   Может ли полевой транзистор работать как амплитудный детектор?
  •   Как работает сеточный детектор
  •   Каковы основные черты частотной модуляции?
  •   Каков спектр у частотно-модулированного сигнала?
  •   Каковы преимущества частотной модуляции?
  •   В чем состоит принципиальное различие между фазовой и частотной модуляцией?
  •   Как получают частотную модуляцию?
  •   На каком принципе работают частотные демодуляторы?
  •   Как действует ограничитель амплитуды?
  •   Какая схема у простого частотного детектора?
  •   Как действует частотный дискриминатор?
  •   Что такое детектор отношений?
  •   Что такое преобразование частоты?
  •   На чем основывается преобразование частоты?
  •   Как работает супергетеродинный приемник?
  •   Как осуществляется преобразование частоты?
  •   Что такое автоматическая регулировка частоты?
  •   Каковы основные черты импульсной модуляции?
  •   Какие существуют виды импульсной модуляции?
  •   На чем основана система группообразования каналов?
  • Глава 12 ЦИФРОВАЯ ТЕХНИКА
  •   Что такое цифровая техника?
  •   Какая система счисления является основой цифровой техники и почему?
  •   Что такое двоичная система записи числа?
  •   Что такое двоично-десятичная система счисления?
  •   Какие основные действия над двоичными числами?
  •   Что такое логические элементы?
  •   Что такое операция логического умножения?
  •   Как осуществить функцию логического умножения?
  •   Что такое операция логического сложения?
  •   Как осуществить функцию логического сложения?
  •   Что такое операция отрицания?
  •   Как реализовать операцию отрицания?
  •   Что такое элемент типа ИЛИ — НЕ?
  •   Что такое элемент И — НЕ?
  •   Каково применение логических элементов в цифровой технике?
  •   Что называется логическим вентилем?
  •   Как реализуются логические схемы?
  •   Что такое диодные логические схемы?
  •   Что такое транзисторные логические схемы?
  •   Что такое диодно-транзисторные логические схемы?
  •   Что такое резисторно-транзисторные логические схемы?
  •   Что такое транзисторно-транзисторные логические схемы?
  •   Что такое матричные логические схемы?
  •   Что такое комбинационные логические схемы и схемы последовательного действия?
  •   Какие типы триггеров используются в цифровой технике?
  •   Что такое триггер RS?
  •   Что такое синхронные или тактируемые триггеры?
  •   Что такое триггер D-типа?
  •   Что такое триггер Т?
  •   Что такое триггер JK?
  •   Что такое триггер «ведущий — ведомый»?
  •   Каковы возможности применения триггеров?
  •   Как работает двоичный счетчик?
  •   Что такое сумматоры?
  •   Что такое запоминающие устройства?
  •   Что такое преобразователи ЦАП и АЦП?
  • Глава 13 ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА
  •   Какие измерительные приборы применяют в электронике?
  •   Что такое измерительный генератор?
  •   Что такое генератор звуковых частот?
  •   Что такое генератор биений?
  •   Что такое генератор стандартных сигналов?
  •   Что такое генератор качающейся частоты?
  •   На каком принципе работает генератор прямоугольных колебаний?
  •   Что характерно для генераторов импульсов?
  •   Как можно измерять частоту?
  •   Как работает абсорбционный частотомер?
  •   Что такое гетеродинный частотомер?
  •   Какой наиболее распространенный метод измерения частоты?
  •   Как работает цифровой частотомер?
  •   Какого типа вольтметры применяют в измерительной технике?
  •   Какова схема у электронного вольтметра постоянного тока?
  •   Можно ли использовать электронный вольтметр для измерения переменных напряжений?
  •   На каком принципе работает цифровой вольтметр?
  •   Что такое осциллограф?
  •   Как работает осциллографическая трубка?
  •   Почему ка экране осциллографа появляется изображение исследуемого напряжения?
  •   Из каких основных узлов состоит осциллограф?
  •   Какие измерения можно проводить с помощью осциллографа?
  •   Каковы основные параметры осциллографа?
  • *** Примечания ***